SSAP: A pilot project in Japan for standardized data collection onboard and shore, and its harmonization to e-navigation

Hideyuki Ando
Smart Ship Application Platform Project
JSMEA (Japan Ship Machinery and Equipment Association)

IMO NCSR-1 June 30, 2014

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Background

- Onboard and shore-based application services, which rely on ship onboard equipment data, have become prevalent
 - Weather routing
 - Optimum trim
 - Ship Performance monitoring
 - Engine performance monitoring
 - Power plant energy management
 - Condition monitoring
 - Remote maintenance
- The concept of "Smart Ship" is to utilize such application services to optimize ship operations in terms of safety and energy efficiency
- The target of "Smart Ship Application Platform (SSAP)" project is to provide open platform to access ship equipment data for such application services

SSAP Project

- Smart Ship Application Platform Project (SSAP)
- Participants
 - Members: 26 organizations
 - Observers: 9 organizations
- Joint Industry Project (JIP) organized by JSMEA
- Project schedule
 - Dec 2012 March 2015 (will move to the next phase after the period)
- Budget
 - Approx. 1.2 Million USD
 - Class NK funding + participant fees from members
- Registered as e-navigation test bed in May 2014

SSAP project organization

TAIYO ELECTRIC CO., LTD.

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Scope of SSAP

- To develop standardized and open platform for safety and energy-efficiency applications to access shipboard equipment data onboard and shore
- 2. To propose ISO standards regarding
 - 1) ship data server
 - 2) data dictionary and format
- 3. To harmonize with e-navigation and other IMO/ISO/IEC standards

Image of application services installation (now)

Image of application services installation (future)

Main action items of SSAP

- 1. Study requirements from existing safety and energy efficiency application services
- 2. Design Master DB and interfaces
- 3. Implementation of Master DB and interfaces
- 4. Onboard trials of the implemented system
- 5. Design specifications for ship shore information system
- 6. Implementation of ship shore system and its trial
- 7. Review the design of Master DB, interfaces and ship-shore system based on lessons learned from the trials
- 8. Develop proposal for ISO

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Image of Master Database

Onboard trial - ship (A)

RoRo Ferry "Sunflower Shiretoko" (retro-fit)

Gross ton : 11,400 MT Speed :25Knot

• L:190m B:26.4m

Trial since Jan 2014

Data and information flow image – Ship (A)

Onboard equipment

- GPS
- Anemometer
- Echo Sounder
- Auto Pilot
- Roll/Pitch sensor
- Engine Data Logger
- M/E remote control
- CPP remote control
- Shaft power meter

Application

- Weather routing
- Automatic abstract log output

Onboard trial - ship (B)

- Crude-oil Carrier "SHINKYOKUTO MARU" (new building)
- Deadweight : 5,500 MT L:105m B:16m
- Trial since April 2014

Data and information flow image – Ship (B)

Onboard equipment

- GPS
- Anemometer
- EM log
- Gyro pilot
- Radar
- AIS
- NAVTEX
- Doppler sonar
- Cargo control system
- Engine Data Logger

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Image of ship – shore open platform

What are the benefits of such platform?

- ✓ Safety and energy-efficiency application service providers can concentrate on providing software function, quality and usability without spending resources for data collection
- ✓ Equipment manufacturers can develop their remote maintenance services by using the standardized platform
- ✓ Ship owners investment cost (CAPEX and OPEX) for onboard applications and shore services will be reduced
- ✓ Ship owners can use robust and reliable data center services to access ship operation data
- ✓ Shipyards and equipment manufactures can collect data from running equipment to improve service levels of their products

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Scope of standardization (1)

- Shipboard data server -
- System model
- System security
- Communication specification
- Data specification
- Data server requirement
- API requirement on equipment, application and data server

Scope of standardization (2)

- data dictionary and format -
- Data dictionary
 - Machinery, hull and cargo
- Specification of data format (Informative annex)
 - Data structure, character of data etc.

Policy of standardization

- Corroborate and harmonize with
 - Existing standards
 - IEC61162-450 (Digital Interface Part 450 Multiple taker and multiple listeners – Ethernet interconnection)
 - ISO16425 (Guidelines for the installation of ship communication networks for shipboard equipment and systems)
 - New proposed standards
 - IHO S-100 series
 - IEC BAM(Bridge alert management Operational and performance requirements, methods of testing and required test results)
 - Associated projects / Organization
 - e-Navigation
 - IEC
 - etc.

Schedule for ISO/IMO

ISO

- Oct 2013 ... Preliminary notice in ISO/TC8 annual committee in Singapore
- Oct 2014 ... Presentation in ISO/TC8 annual committee in Panama
- Mar 2015 ... New work item proposal to ISO/TC8/SC6

IMO

 SSAP will report the result according to the e-navigation test bed guideline

- 1. Introduction
- 2. Scope of SSAP
- 3. Implementation and onboard trials
- 4. Ship shore system concept
- 5. Standard proposal
- 6. Summary

Summary

- JSMEA, Class NK and 26 members are working on SSAP project, which is registered as a test bed of e-navigation
- SSAP aims at providing standardized way of accessing ship equipment data for safety and energy efficiency applications onboard and ashore
- SSAP will harmonize its proposal with e-navigation and other IMO/ISO/IEC standards

Thank you very much for your attention

For further information, please contact

Mr. Hirofumi Kodama, kodama@jsmea.or.jp

Mr. Takachika Bunya, bunya@jsmea.or.jp

TEL: +81-3-3502-2041

JSMEA, Japan Ship Machinery and Equipment Association

This project is carried out with the support of ClassNK as part of the ClassNK Joint R&D for Industry Program.