

Smart Operations, Tokyo 2015

The Application of Big Data for Ship Operational Efficiency

11th June 2015

Hideyuki Ando, MTI (NYK group)

- 1. Introduction of MTI
- 2. Fleet operation and operational efficiency
- 3. Big data and ship performance model
- 4. Big data applications
- 5. Summary

1. Introduction of MTI

- 2. Fleet operation and operational efficiency
- 3. Big data in shipping
- 4. Big data applications
- 5. Summary

MTI (Monohakobi Technology Institute)

Company profile

Company name	Monohakobi Technology Institute
Established	April 1, 2004
Number of employees	63 (as of April 1, 2015)
Head office	7 th floor, Yusen Building, Chiyoda-ku, Tokyo
Branch office	Singapore
Laboratory	Yokohama
Stockholder	NYK (100%)

Yusen Building, Chiyoda-ku, Tokyo

Please visit our new web site ! http://www.monohakobi.com/en/

R&D		Sale	S
Maritime Technology Division	Logistics Technology Group	Maritime technology	Logistics technology
 Maritime Information Group Maritime Technology Group Singapore Branch 	• Logistics Group	 Sales Group Yokohama Lab. 	

- 1. Introduction of MTI
- 2. Fleet operation and operational efficiency
- 3. Big data and ship performance model
- 4. Big data applications
- 5. Summary

NYK fleet (as of the end of March 2014)

Containerships (including semicontainerships and others)

101vessels / 5,572,991 DWT

Bulk Carriers (Capesize) 129 vessels / 24,576,302 DWT

Bulk Carriers (Panamax & Handysize) 286vessels / 17,597,420 DWT

Cruise Ships 3 Vessels / 21,577 DWT

Car Carriers 125 vessels / 2,230,958 DWT

Tankers 77 vessels / 12,056,781DWT

LNG Carriers 29 vessels / 2,172,415 DWT

Others 26 vessels / 318,002 DWT

877 vessels 68,036,568Kt (DWT)

Fleet operation

- Fleet operation pursue best performance in terms of safety, economy and environment
 - Minimize cargo damage and downtime
 - Schedule integrity
 - Cost saving
 - Environment conservation

Operational efficiency – ship operator's view

Operational efficiency – ship owner's view

Performance management

Performance management is organizational improvement process by using performance monitoring

- Share objective among related parties
- Continuous improvement and learning cycle with performance monitoring
- Pursue target by Information sharing and collaboration

Operational efficiency project with NYK

NYK IBIS Project (2012-)

IBIS – <u>I</u>nnovative <u>B</u>unker and <u>I</u>dle time <u>S</u>aving

Fuel Efficiency Helped NYK Line Succeed in 2013

Tuesday January 7, 2014

Efficiency improvements, particularly reductions in fuel consumption, helped Japan's Nippon Yusen Kaisha Line (NYK Line) succeed in 2013, despite a difficult market and high bunker prices, President Yasumi Kudo said in his New Year statement.

Kudo said the shipping company reduced "muda," or wasted activity, through initiatives including its "Innovative Bunker and Idle-time Saving" (IBIS) project, which shares real-time information between land and ships to economise ship movements, and an air-lubrication system adopted on the vessel Soyo to increase fuel efficiency.

NYK Line President Yasumi Kudo said the company faced difficult conditions in 2013

Article from Ship and Bunker

Fuel cost saving by IBIS \$40 million in 2013

- 1. Introduction of MTI
- 2. Fleet operation and operational efficiency
- 3. Big data and ship performance model
- 4. Big data applications
- 5. Summary

Big data in shipping

The followings are examples of Big data, by which MTI try to create values

Voyage data

- Automatically collected data
- Noon report

AIS data

• Satellite AIS / shore AIS

Weather data

• Forecast / past statistics

Business data

• Container transport data

Trouble data

Engine trouble data

Big data processing flow

Provide information to right people at right time for assisting their situation awareness for right decision and action

SIMS as open platform

Open platform = interface to 3rd party applications

SIMS is a computer system to collect onboard equipment data and share it with 3rd parties' onboard and shore applications

Candidate 3rd party applications include

- Weather routing
 - Vessel performance analysis
- Engine condition monitoring
- Remote maintenance

•

Shore dashboard for ship operator

Ship operator can easily check current situation of the vessel and voyage records.

Map:

- ship position
- ship speed
- Beaufort scale
- wind direction

Trend graph:

- departure time
- arrival time
- ship speed
- RPM
- fuel consumption

Shore dashboard for ship technical manager

Ship technical manager can check engine plant condition of each vessel

Trend graph group: (diesel engine ship)

- M/E Exh. Gas & Scav. Air & JCFW
- M/E T/C & A/C
- M/E FO & LO

Monohakobi Technology Institute

- M/E Torque Rich
- M/E Exh. Gas x M/E Load
- M/E SFOC
- M/E Cylinder Oil Consumption
- D/G & S/G & T/G
- Boiler & EGE
- M/E Performance

Steam turbine vessel version will be released in July 2015

Ship performance – key technology for analysis

6500TEU Container Ship Wave height 5.5m, Wind speed 20m/s BF scale 8, Head sea

@ engine rev. 55rpm

<Calm sea performance> speed: 14 knot FOC: 45 ton/day

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

Ship performance in all weather

FOC [MT]

<Target vessel> 6500TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed	wave height	wave period
	(m/s)	(m)	(000)
BF0	0.0	0.0	0.0
BF3	4.5	0.6	3.0
BF4	6.8	1.0	3.9
BF5	9.4	2.0	5.5
BF6	12.4	3.0	6.7
BF7	15.6	4.0	7.7
BF8	19.0	5.5	9.1
BF9	22.7	7.0	10.2

0deg (wind, wave) - head sea

Performance model correction by measurement data

Measurement data

Performance model correction

- 1. Introduction of MTI
- 2. Fleet operation and operational efficiency
- 3. Big data and ship performance model
- 4. Big data applications
- 5. Summary

Big data application areas

Role	Function	Example of Big data application	
Ship operator	Operation	Energy saving operationSafe operationSchedule management	
	Fleet planning	Fleet allocationService planningChartering	
Ship owner	Technical management	 Safe operation Hull & propeller cleaning Condition monitoring and maintenance Environmental regulation compliance Energy saving retrofit 	
	New building	Design optimization	

Optimum weather routing with performance monitoring

Weather Routing (PLAN)

Monitoring (CHECK)

- Voyage plan
- + course, speed, RPM, FOC, weather
- + ship performance model

- Feedback
- Voyage actual
- + actual speed RPM, RPM FOC
- + actual weather

Ship model and weather forecast are inherently include errors.

But feedback loop by monitoring can make this system work better.

Service optimization

Ship performance model

Fouling risk assessment

Operation profile

Long-term performance analysis

Fouling risk assessment will be conducted by using the following information

- Operation profile
- Long term performance analysis
- Lay-by days/area/season

To recommend under water inspection and hull / propeller cleaning

Lay-by days/area/season

Energy saving hull modification

23 % CO2 reduction was confirmed

Operation profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- etc

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- etc

- 1. Introduction of MTI
- 2. Fleet operation and operational efficiency
- 3. Big data and ship performance model
- 4. Big data applications
- 5. Summary

Summary

- Big data has a big potential to improve operational efficiency in shipping. Reliable ship – shore network and data collection platform is necessary.
- One of the key technology to utilize big data is accurate ship performance model
- We need to understand two different perspectives of ship owner and ship operator for making Big data applications
- Several Big data applications are introduced

Thank you for your attention

