

SNAK-JASNAOE Joint Workshop in Autumn 2015 Koje, Korea

Big data and IoT in Shipping

5th November 2015

Hideyuki Ando

MTI(Monohakobi Technology Institute), NYK group

IoT (Internet of Things)

The era of "transparency" comes

Big data in shipping

Examples of Big data in shipping

<u>Voyage data</u>

- Automatically collected data (IoT)
- Noon report

Machinery data

- Automatically collected data (IoT)
- Manual report data
- Maintenance data

AIS data

Satellite AIS / shore AIS

Weather data

• Forecast / past statistics

Business data

Container transport data

Ship operator's view

Ship owner's view

Big data application areas

Role	Function	Examples of Big data applications	
Ship operator	Operation	Energy saving operationSafe operationSchedule management	
	Fleet / service planning	Fleet planningCharteringService planning	
Ship owner	Technical management	 Safe operation Hull & propeller cleaning Condition monitoring and maintenance Environmental regulation compliance Energy saving retrofit 	
	New building	Design optimization	

Big data processing flow

It is cross functional and organizational process to change action

Ship performance in seaways

6000TEU Container Ship Wave height 5.5m, Wind speed 20m/s, BF scale 8, Head sea

Effecting factors

- 1. Weather (wind, wave and current)
- 2. Ship condition (draft, trim, cleanness of hull and propeller, and aging effect of engine)
- 3. Ship design (hull, propeller and engine)

Ship performance model in all weather

FOC [MT]

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed (m/s)	wave heigh (M)	wave period (อฮบ)
BF0	0.0	0.0	0.0
BF3	4.5	0.6	3.0
BF4	6.8	1.0	3.9
BF5	9.4	2.0	5.5
BF6	12.4	3.0	6.7
BF7	15.6	4.0	7.7
BF8	19.0	5.5	9.1
BF9	22.7	7.0	10.2

0deg (wind, wave) - head sea

Performance model calibration with IoT data

Corrected IoT data is used for performance model calibration

Optimization of voyage with IoT data

Weather Routing (PLAN)

Monitoring (CHECK)

- Voyage plan
- + course, speed, RPM, FOC, weather
- + ship performance model

- Feedback
- Voyage actual
- + actual speed RPM, RPM FOC
- + actual weather

Ship model and weather forecast are inherently include errors.

But feedback loop by monitoring can make this system work better.

Optimization of operation plan with Big data

Monte-Carlo simulation by using ship performance model and past weather records

Energy saving modification based on Big data

23 % CO2 reduction was confirmed

Operation profile (Big data)

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- etc

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- etc

IoT for engine and machineries

<u>Target</u>

- Prevent unpredicted downtime
- Energy efficiency in operation
- Reduce maintenance cost

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Ship main engine

Shore dashboard

Smart Ship Application Platform (SSAP) Project - JSMEA and ClassNK Joint Industry Project -

http://www.e-navigation.net/index.php?page=ssap-smart-ship-application-platform

- · Submitting Organization: Japan Ship Machinery and Equipment Association (JSMEA) Smart Ship Application Platform WG
- · Point-of-Contact: Dr. Hideyuki Ando (MTI : Research company of NYK group), hideyuki_ando@monohakobi.com
- Functional Capabilities: Provide current and past numerical data on Weather routing, Trim, Performance monitoring, Engine monitoring, Hull and cargo condition monitoring, Power plant energy management and Remote maintenance.

 Intended Purpose: The target is to design a master database, interface prototypes, specifications of communication system between ships and shore facilities and international standards of data server requirments and structure of manual machinery and equipment so that as many application services a

- · Portrayal examples:Not specified special display devices for this SSAP.
- · Last edited: April 22, 2014

Description

Smart Ship Application Platform Project (JAPAN)

1. Genaral information

Project name	SSAP (Smart Ship Applicati	
Name of testbed	Application platform for data sharing at s	

Proposal for new ISO in May 2015

- ISO/NP19847 Shipboard data servers to share field data on the sea
 - Specifications of ship data server
- ISO/NP19848 Standard data for machinery and equipment part of ship
 - Specifications of dictionary and format

Concept of ship – shore open platform for marine industry

Courtesy of Smart Ship Application Platform (SSAP) Project of JSMEA 2014-15

Summary

- IoT and Big data are becoming prevalent in the marine industry. Considering user role is important to develop applications of IoT and Big data.
- Applications for energy efficiency in shipping are shown. Performance models calibrated with IoT data is the key for fleet operation optimization.
- For further seeking possibility of IoT applications in the marine industry, open platform to share data shall be necessary. SSAP aims at standard of data format and dictionary for onboard data collection.

