

Japan – Norway Workshop Future Technology and Finance in the Maritime Sector

How to utilize Big data and IoT in the shipping sector ?

12th February 2016

Hideyuki Ando, MTI (NYK group)

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

1. Introduction of MTI

- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

2015 @ Copyright Monohakobi Technology Institute

Please visit our web page -> http://www.monohakobi.com/en/

Introduction of MTI (*Monohakobi* Technology Institute)

- Established April 1, 2004
- Locations

Monohakobi Technology Institute

- Head office 7th floor, NYK building, Tokyo, Japan
- MTI Singapore branch
- MTI Yokohama Laboratory
- 100% owned by NYK
- Number of employees 63 (as of April 1, 2015)
- President Mr. Makoto Igarashi
- Business areas
 - R&D of Maritime Technology
 - R&D of Logistic Technology

Technology Institute

Examples of MTI R&D projects

Reduction of resistance

Air lubrication system

Propulsion efficiency Energy saving devices

Power plant efficiency

Hybrid turbo charger

Operational efficiency Performance management system

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

IoT (Internet of Things)

"Instrumentation and control" and "Internet" are to be bridged. The era of "transparency" where user can access field data.

Big data in shipping

Examples of Big data in shipping

<u>Voyage data</u>

- Automatically collected data (IoT)
- Noon report

Machinery data

- Automatically collected data (IoT)
- Manual report data
- Maintenance data / trouble data

AIS data

• Satellite AIS / shore AIS (IoT)

Weather data

- Forecast / past statistics
- Anemometer / wave measurement (IoT)

Business data

Cargo transport data

<u>Target</u>

Monohakobi

- Prevent unpredicted downtime
- Energy efficiency in operation
- Reduce maintenance cost

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Change way of working

Reference) https://www.ge.com/sites/default/files/ GE_IndustrialInternetatWork_WhitePaper_20131028.pdf

Same concepts are applicable to marine industry

<u>Target</u>

- Prevent unpredicted downtime (owner)
- Energy efficiency in operation (operator)
- Reduce maintenance cost (owner)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Change way of working

IoT and Big data application areas

Role	Function	Example of Big data application	
Ship operator	Operation	Energy saving operationSafe operationSchedule management	
	Fleet planning	Fleet allocationService planningChartering	
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 	
	New building	Design optimization	

Other partners in value chains, such as cargo owners, shipyards, equipment manufacturers, class societies and others, have also interests in ship Big data.

Big data processing flow

"Big data" is an organizational process The target is to change way of working by utilizing data

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

SIMS as open platform Open platform = interface to 3rd party applications

SIMS also works as a open platform to collect onboard equipment data and share them with 3rd parties' applications.

SIMS uses Furuno Open Platform (FOP) supplied and maintained by Furuno Electric, one of the world-wide marine equipment suppliers.

SIMS provides open API (Application Programming Interface) to 3rd party applications.

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Summary

Toolbox of using Big data

Dashboard

- Example) Dashboard for ship manager
 - Support safety management of fleet

Business intelligence (BI) tool

- Quick visualization of data
- Business experts can be the best data analysts
- Standardization of data naming is very important to accelerate data usage

Download data from multiple vessels (Data Finder)

Data analysis with BI tool (e.g. comparison of engine data of multiple vessels)

Business intelligence (BI) tool

- Dashboard created by using BI
 - Easy to make (rapid prototyping)
 - Easy to customize

Statistics e.g. operational profiles

Performance analysis - long term analysis -

Performance analysis

Semi-automate the long term analysis process

Pick-up target vessels

Visualize performance drops of fleet vessels after last dry dock

Cleaning hull & propelle

Expand service available ports

Hull & propeller Cleaning Service Provider

Performance analysis - in-service performance

6000TEU Container Ship Wave height 5.5m, Wind speed 20m/s BF scale 8, Head sea

@ engine rev. 55rpm

<Calm sea performance> speed: 14 knot FOC: 45 ton/day

<Performance in the rough sea(BF8)> speed: 8 knot FOC: 60 ton/day

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

In-service performance model

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	Beddioresearc			
	wind speed (m/s)	wave heigh (III)	wave period งระบว	
BF0	0.0	0.0	0.0	
BF3	4.5	0.6	3.0	
BF4	6.8	1.0	3.9	
BF5	9.4	2.0	5.5	
BF6	12.4	3.0	6.7	
BF7	15.6	4.0	7.7	
BF8	19.0	5.5	9.1	
BF9	22.7	7.0	10.2	

0deg (wind, wave) - head sea

In-service ship performance model

- It is a "Digital Twin" of each ship regarding performance in-service.
- Performances under all possible conditions (draft, trim, wind, wave) are integrated in the model.
- Simulation results are compiled into a multidimensional mathematical model.
- IoT data are used for correction of the model.

Operation optimization with in-service ship performance model

Simulating ship performance in actual weather to optimize ship services

IoT for preventive maintenance

<u>Target</u>

- Prevent unpredicted downtime
- Energy efficiency in operation
- Reduce maintenance cost

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Collaborations with external experts are necessary

Ship main engine

Shore dashboard

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

Concept of ship – shore open platform

Ship-shore open platform provides good security and access control to enhance cooperation with industry partners.

Smart Ship Application Platform (SSAP) Project

- A standardization activity regarding ship IoT data -

http://www.e-navigation.net/index.php?page=ssap-smart-ship-application-platform

- · Submitting Organization: Japan Ship Machinery and Equipment Association (JSMEA) Smart Ship Application Platform WG
- · Point-of-Contact: Dr. Hideyuki Ando (MTI : Research company of NYK group), hideyuki_ando@monohakobi.com
- Functional Capabilities: Provide current condition monitoring, Power plan
- Intended Purpose: The target is t and international standards of da onboard machinery and equipme
- Portrayal examples:Not specified
- Last edited: April 22, 2014

Description

Smart Ship Application Pla

1. Genaral information

Project name

Name of testbed

Proposals for new ISO

- ISO/NP19847 Shipboard data servers to share field data on the sea
 - Specifications of shipboard data server
- ISO/NP19848 Standard data for machinery and equipment part of ship
 - Specifications of naming rules for shipboard data channel

Expected Applications of Ship IoT and Open Platform

Role	Application of Ship IoT and open platform	
Shipping	Ship owner and operator needs applications for energy saving, minimize downtime, safety transport and environmental conservation	
Manufacturer	Remote diagnosis, preventive maintenance and self diagnostics	
Shipyard	Data analysis services for ship owners, life-cycle support and feedback to new design	
Service provider	Fleet management system, big data analysis services, condition monitoring services and IoT platform	
Academy	Research on big data analysis, numerical simulation methods and digital twin. Education and trainings.	
Class society	Shore data center. Class inspection	

Government ... utilization for e-navigation and MRV

- 1. Introduction of MTI
- 2. IoT and Big data
- 3. SIMS (Ship Information Management System)
- 4. Data analysis
- 5. Open platform
- 6. Concluding remarks

R&D by open collaboration

In the coming era of ship intelligence, we think we need open collaborations to pursue wide variety of possibilities to improve our safety and efficiency

Concluding remarks

- From our experiences with SIMS, we consider the concepts of IoT and Big data are applicable and making values to our shipping industry.
- To pursue further utilization of IoT data, we need open collaboration by sharing the data. We are working on standardization of IoT data collection and open platform to share the data.
- We hope to keep good communication and collaboration with the maritime industry in Norway also in the coming ship intelligence era.

Thank you for your attention

