

Norway – Japan Maritime Seminar New Technologies in Shipping and Ship building

Connected Ships – a Future Reality

24th January 2017

Hideyuki Ando

MTI (Monohakobi Technology Institute)

The era of connected ships

- Use assets more efficiently -

- Automate ship oper
- Manage ship/shore productive team
- Integrate fleet syste
- Use big data to find reduce accidents
- Inform managemen

Reference)

Martin Stopford, Shipping's Next Techno-Econo (http://www.jpmac.or.jp/forum/pdf/106_1.pdf

Smart-shipping toolbox

Telematics (≒ IoT)
 Satellite communications
 Data storage & analysis
 Smart phone style apps
 Information systems
 Automation

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" where user can access field data.

Coming IoT of Ship

<u>Target</u>

- Prevent unpredicted downtime (owner)
- Reduce maintenance cost (owner)
- Energy efficiency in operation (operator)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Change way of working

Digital Twin

- Real world individual product will be modeled in computer -

Reference) http://www.gereports.com/post/119300678660/wind-in-the-cloud-how-the-digital-wind-farm-will/

IoT and Big data application areas

Role	Function	Example of Big data application		
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 		
	New building	Design optimization		
C Ship operator F	Operation	Energy saving operationSafe operationSchedule management		
	Fleet planning	Fleet allocationService planningChartering		

Other partners in value chains, such as cargo owners, shipyards, equipment manufacturers, and class societies, have also interests in ship IoT and Big data.

Ship performance in service

6000TEU Container Ship Wave height 5.5m, Wind speed 20m/s BF scale 8, Head sea

@ engine rev. 55rpm				
<calm performance="" sea=""></calm>				
speed:	14 knot			
FOC:	45 ton/day			

<Rough sea(BF8) performance>
speed: 8 knot
FOC: 60 ton/day

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

Ship performance model

6000TEU Container Draft 12m even

Sea condition Beaufort scale

Dedutore Searc					
	wind speed (m/s)	wave height (III)	wave period งอธษา		
BF0	0.0	0.0	0.0		
BF3	4.5	0.6	3.0		
BF4	6.8	1.0	3.9		
BF5	9.4	2.0	5.5		
BF6	12.4	3.0	6.7		
BF7	15.6	4.0	7.7		
BF8	19.0	5.5	9.1		
BF9	22.7	7.0	10.2		

0 deg (wind, wave) – head sea

Ship performance model in service

- Digital Twin of ship performance inservice
- Performances under all possible conditions (draft, trim, wind and wave)
- IoT data are used for correction of the model.

Operation optimization

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Energy saving hull modification

23 % CO2 reduction was confirmed

Operation profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

Open collaborations with partners

 i-Shipping: Japanese government funding projects
 Ship IoT for safety (2016-2020)

Simulation of LNG cargo transpo

Cargo crane condition monitorin

Multilayered Doppler log

Structural Health Monitoring

Collision avoidance

and autonomous ship

Propulsive efficience monitoring

> @ Copyright 2015 Ionohakobi Technology Institute

2015 @ Copyright) nohakobi Technology Institute

Standardization activities of Ship IoT platform (SSAP2: <u>Smart Ship Application Platform 2 Project by JSMEA</u>)

Thank you very much for your attention

