

DNV GL National Committee Meeting in Kawana, Japan

Digitalization in Shipping - current status and way forward -

23rd February 2017

Hideyuki Ando

MTI, NYK Group

Outline

- 1. Digitalization in shipping
- 2. Application examples
- 3. Open platform and standardization
- 4. Way forward and summary

Outline

1. Digitalization in shipping

- 2. Application examples
- 3. Open platform and standardization
- 4. Way forward and summary

Digitalization - the next techno-economic great wave

1. Use assets more efficiently

- 1. Automate ship operations & navigation
- 2. Manage ship/shore personnel into a single more productive team
- 3. Integrate fleet systems to improve asset performance
- 4. Use big data to find ways to improve performance & reduce accidents
- 5. Inform management on how the business is performing
- 2. Produce regulatory information digitally
- 3. Develop global through transport system

Reference)

Martin Stopford, Shipping's Next Techno-Economic Great Wave, Tokyo, Dec 2015 (http://www.jpmac.or.jp/forum/pdf/106_1.pdf)

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" where user can access the field data.

Digital Twin

An approach of Product Lifecycle Management(PLM) to extend computerbased engineering capabilities to fleet operations

Reference)

1. <u>http://www.gereports.com/post/119300678660/wind-in-the-cloud-how-the-digital-wind-farm-will/</u>

2. Michael Grieves, Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management (English Edition), 2012

Utilize IoT in shipping

<u>Target</u>

- Prevent unpredicted downtime (owner)
- Reduce maintenance cost (owner)
- Energy efficiency in operation (operator)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics
- Digital twin

Change way of working !

IoT and Big data application in shipping

Role	Function	Example of IoT and Big data application			
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 			
	New building	Design optimization			
Ship operator	Operation	Energy saving operationSafe operationSchedule management			
	Fleet planning	Fleet planningService planningChartering			

Other partners in value chains, such as cargo owners, shipyards, equipment manufacturers, and class societies, have also interests in ship IoT and Big data.

Outline

- 1. Digitalization in shipping
- 2. Application examples
- 3. Open platform and standardization
- 4. Way forward and summary

Ship performance in service

6000TEU Container Ship

Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

FOC: 60 ton/day

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

In-service ship performance model

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed	wave height	wave period
	(m/s)	(m)	(350)
BF0	0.0	0.0	0.0
BF3	4.5	0.6	3.0
BF4	6.8	1.0	3.9
BF5	9.4	2.0	5.5
BF6	12.4	3.0	6.7
BF7	15.6	4.0	7.7
BF8	19.0	5.5	9.1
BF9	22.7	7.0	10.2

0deg (wind, wave) - head sea

Ship performance model in service

- Digital Twin of ship performance inservice
- Performances under all possible conditions (draft, trim, wind and wave)
- IoT data are used for correction of the model.

Operation optimization

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Energy saving hull modification

23 % CO2 reduction was confirmed

Operation profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

Prognostics and health monitoring in shipping for preventing troubles

<u>Target</u>

- Prevent unpredicted downtime
- Reduce maintenance cost
- Predict remaining useful life

<u>Measure</u>

- SCADA data analysis
- Condition monitoring (image, vibration, AE and etc.)
- Estimate RUL (Remaining of Useful Life)

Reference)

- 1. Prognosticating fault development rate in wind turbine generator bearings using local trend models (B&K Vibro, DTU), PHM Europe 2016, pp. 132-141
- 2. https://theta360.com/s/f41xbUZ4smDJX4wsFh7gNUuZg?view=embed

KIRARI NINJA 360-degree panoramic camera to take photos inside the dark combustion chamber

Prognostics and health monitoring in shipping for preventing troubles

1. Prognosticating fault development rate in wind turbine generator bearings using local trend models (B&K Vibro, DTU), PHM Europe 2016, pp. 132-141

2. https://theta360.com/s/f41xbUZ4smDJX4wsFh7gNUuZg?view=embed

KIRARI NINJA 360-degree panoramic camera to take photos inside the dark combustion chamber

Outline

- 1. Digitalization in shipping
- 2. Application examples
- 3. Open platform and standardization
- 4. Way forward and summary

NYK/MTI's R&D activities for digitalization

- Open collaboration with industry partners -

i-Shipping: Japanese government funding projects Ship IoT for safety (2016-2020)

Simulation of LNG cargo transport

Cargo crane condition monitoring

Multi-layered Doppler log

Structural Health Monitoring

ision avoidance

and autonomous ship

Damage prevention of enginepower plant Propulsive efficiency monitoring

@ Copyright 2015 Ionohakobi Technology Institute

Open platform for maritime industry

2015 @ Copyright @ nohakobi Technology Institute

Standardization activities of Ship IoT platform (SSAP2: <u>Smart Ship Application Platform 2 Project by JSMEA</u>)

ISO CD 19847

• Requirements for shipboard data servers to collect and share field data

ISO / CD 19848

Standardized ID of sensors, common data model & format

ID of sensors

- URL compliant naming scheme
- Dictionaries (informative)
 - JSMEA
 - DNV-GL

<u>Data model</u>

- Data channel list (meta data)
- Time series data (data)

Data format

- XML with schema definition
- JSON/CSV (informative)
- CSV (informative)

Naming rule & data standard –

http://IMO1234567/MainEngine/Cylinder2FO/In/Temp

http://IMO1234567/MainEngine/Cylinder1/ExhaustGas/Temp

Process for ISO (ISO CD19847, ISO CD19848) *

- ISO PWI 19847/19848 were accepted as NP in Aug 2015
- The first ISO/TC8/SC6/WG16 meeting was held in June 2016 in Tokyo
- ISO CD 19847/19848 were accepted in Nov 2016
- Drafting of ISO DIS 19847/19848 undergoes.
 - Many contribution from Norway, Finland and Denmark
- 2 DISs will be distributed soon for comment and voting to the P-members of ISO/TC8/SC6
- •NP: New work item Proposal, WD: Working Draft
- •CD: Committee Draft, DIS: Draft International Standard
- FDIS: Final Draft International Standard, IS: International Standard

Outline

- 1. Digitalization in shipping
- 2. Application examples
- 3. Open platform and standardization
- 4. Way forward and summary

Integrated bridge operation

Objective

- Prevent collisions
- Reduce workloads of crews
- Contingency backup

<u>Measure</u>

- Integrated bridge system
- Enhanced situational awareness
- Remote operation
- Autonomous ship

Infrastructure & regulation are very important

A possible scenario

- integrated operations (IO) for ocean-going vessels ? -

PPTO perspective is crucial <u>People, Processes, Technology and Organization</u>

Integration across on- and offshore

- Integrated onshore and offshore processes and centers
- Continuous onshore support

Integration across companies

- Integrated operator and vendor centers
- Automated processes
- Digital services and 24/7 operations

- It is just an example from O&G offshore
- But, we have to think until which extent and how will we utilize IO ?

Reference)

- <u>http://www.iocenter.no/system/files/sites/default/files/IO_Conference/IO14/</u> <u>Presentations/P5_Heitmann%20Hansen.pdf</u>
- T. Rosendahl and V. Hepso, Integrated Operations in the Oil and Gas Industry: Sustainability and Capability Development 1st Edition, IGI Global, 2012

Limited integration

- Traditional practice
- Periodic onshore support

Cyber Security onboard ships - towards cyber resilient ships and operations -

Monohakobi Technology Institute

BIMCO, Feb 2016

Cyber security guidelines

- **IMO, MSC** interim guidelines on cyber risk management (Jun 2016)
- **BIMCO** the guidelines on cyber security onboard ships (Feb 2016)
- **DNV-GL** Recommended Practice: Cyber security resilience management for ships and mobile offshore units in operation (Sep 2016)

Risk management on cyber security (BIMCO)

- 1. Understanding the cyber threat
- 2. Assessing the risk
- 3. Reducing the risk
- 4. Developing contingency plans

In Japan, JSTRA started a study group of cyber security in Aug 2016 and will continue for 3 years

A roadmap regarding digitalization toward 2020

Торіс		2016	2017	2018	2019	2020
Applic ation	R&D projects (e.g. i-Shpping in Japan and autonomous ships in Europe)	<	(Navigation, e	R&D projects ngine, hull, cargo, opera	tion and etc.)	>
	PHM ^{*1} services & products (Machinery & equipment)	Condi	ition monitoring and PH	M for main engine, mach	nineries and equipment.	>
	IT and IoT utilization in fleet operation	Integration of	f ship with shore operati	on system. Optimizatior	, automation and simula	tion technologies.
Plat form	Ship IoT standardization (ISO CD 19847/19848) and other ISOs	< ISO 19	9847/19848	(FDIS)	Smart Ship related	ISOs ?
	Ship data center		<	Trials & (Dperation	
Regula tory	Cyber security	BIMCO	guideline, IMO MSC gui	deline, Class guideline ←	ightarrow IACS Cyber Security Pa	nel
	10					
	MRV ²			<	EU MRV	
	e-Navigation and autonomous	Model development	Standardizatio	n 🔬	Implementation	Operation
	ship regulations	<	Several autonomo	ous ship projects in Norv	ay, Finland and in other	nations

*1 PHM: Prognostics and Health Monitoring, *2 MRV: Monitoring Reporting and Verification

Thank you very much for your attention

