

Green Ship Technology 2017 Copenhagen, Denmark

Alternative approaches to monitoring - 'Digital Twin' of vessel performance -

24th March 2017

Hideyuki Ando

MTI, NYK Group

- 1. Introduction of NYK/MTI
- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

1. Introduction of NYK/MTI

- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

NYK Corporate Profile

- NYK Line (Nippon Yusen Kaisha)
- Head Office: Tokyo, Japan
- Founded: September 29, 1885
- Business Scope:
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 34,270 (as of the end of March 2016)
- Revenues: \$ 22.7 billion (Fiscal 2015)

NYK Head Office in Tokyo

NYK Fleet (as of the end of March 2016)

Containerships (including semicontainerships and others) 99 vessels / 5,820,781 DWT

Bulk Carriers (Capesize) 108 vessels / 21,248,606 DWT

Bulk Carriers (Panamax & Handysize) 269 vessels / 16,411,393 DWT

Wood-chip Carriers 47 vessels / 2,509,047 DWT

Cruise Ships 1 Vessel / 7,548 DWT

Car Carriers 119 vessels / 2,165,138 DWT

Tankers

68 vessels / 11,030,601 DWT

LNG Carriers 29 vessels / 2,176,681 DWT

Others

42 vessels / 695,974 DWT

782 vessels 62,065,769Kt (DWT)

MTI (Monohakobi Technology Institute)

- strategic R&D arm of NYK Line -

http://www.monohakobi.com/en/

- Established : April 1, 2004
- Stockholder : NYK Line (100%)
- Number of employees : 62 (as of 1st April, 2016)
- Location
 - Head Office : 7th Fl., Yusen Building, Tokyo, Japan
 - MTI CO., LTD. SINGAPORE BRANCH, Singapore
 - MTI YOKOHAMA LAB (Transportation Environment Lab), Yokohama, Japan

NYK SUPER ECO SHIP 2030 (Concept ship for the future 69% less CO2 emissions)

Monohakobi

- 1. Introduction of NYK/MTI
- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" where user can access the field data.

Potentials of utilizing IoT and Big data in shipping

Role	Function	Example applications	
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 	
	New building	Design optimization	
Ship operator	Operation	Energy saving operationSafe operationSchedule management	
	Fleet planning	Fleet planningService planningChartering	

Other partners in value chains, such as cargo owners, shipyards, equipment manufacturers, and class societies, have also interests in ship IoT data to improve their operational efficiency.

Energy saving hull modification

23 % CO2 reduction was confirmed

Operational profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

Utilize IoT in shipping

<u>Target</u>

- Prevent unpredicted downtime (owner)
- Reduce maintenance cost (owner)
- Energy efficiency in operation (operator)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Change way of working !

- Open collaboration with industry partners -

i-Shipping: Japanese government funding projects Ship IoT for safety (2016-2020)

Simulation of LNG cargo transport

Cargo crane condition monitoring

Collision avoidance and autonomous ship **Multi-layered** Doppler log **Propulsive efficiency** monitoring **Structural Health Monitoring**

> **Damage prevention of engine**power plant

2017 @ Copyright) Ionohakobi Technology Institute

Open platform for maritime industry

0 Copyright 2017 nohakobi Technology Institute

- 1. Introduction of NYK/MTI
- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

Engineering knowledge, simulations and tools have been used for design and production

- Designers and engineers consider life cycle value of products
 - Manufacturability, usability, maintainability, disposability ...

Era of IoT:

Engineering knowledge, simulations and tools are now demanded through life cycle of products

- Designers and engineers may provide engineering services to support operations
- IoT allow designers and engineers to access field data
- Operational efficiency will be improved by integrating existing good culture and engineering knowledge.

Digital Twin

An approach of Product Lifecycle Management(PLM) to extend computerbased engineering capabilities to operations

Reference)

1. http://www.gereports.com/post/119300678660/wind-in-the-cloud-how-the-digital-wind-farm-will/

2. Michael Grieves, Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management (English Edition), 2012

- 1. Introduction of NYK/MTI
- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

Ship performance in service

6000TEU Container Ship

Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

Model of vessel performance in service

1. Long term analysis

Degradation of hull and propeller

2. Draft and trim effect

Tank test, CFD or estimation from IoT measurement data

3. Wind and wave effect

Theoretical calculation

Continuous model to represent discrete performance data – draft and trim

Extend 3-dimensional B-spline volume to multi-dimensional volume to represent continuous data (Joint research with AIST)

Theoretical estimation of wind and wave effect (Joint research with NMRI)

Considered forces and moments

- 1. Resistance in still water
- 2. Hydrodynamic forces and moments
- 3. Propeller thrust
- 4. Rudder forces and moment
- 5. Wind resistance
- 6. Added resistance in short crested irregular waves

$$X = X_{0}(V_{S}) + X_{D}(\beta) + (1-t)X_{P}(N_{P},V_{S}) + X_{R}(\beta,\delta) + X_{A}(V_{r},\gamma_{r}) - R_{AW}(V_{S},\beta;H,T,\theta)$$
(27)

$$Y = Y_D(\beta) + Y_R(\beta, \delta) + Y_A(V_r, \gamma_r)$$
(28)

$$N = N_D(\beta) + N_R(\beta, \delta) + N_A(V_r, \gamma_r)$$
⁽²⁹⁾

Reference) M. Tsujimoto, et.al,: Development of a Calculation Method for Fuel Consumption of Ships in Actual Seas With Performance Evaluation, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering(OMAE),2013

In-service ship performance model

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

Beddioresourc				
	wind speed (m/s)	wave height (III)	wave period งงระบา	
BF0	0.0	0.0	0.0	
BF3	4.5	0.6	3.0	
BF4	6.8	1.0	3.9	
BF5	9.4	2.0	5.5	
BF6	12.4	3.0	6.7	
BF7	15.6	4.0	7.7	
BF8	19.0	5.5	9.1	
BF9	22.7	7.0	10.2	

0deg (wind, wave) - head sea

An example of model valid

6000TEU 2012/3/21 - 4/1

Voyage: OAKLAND-TOKYO

Accuracy of vessel performance model was confirmed.

Total FOC in voyage Actual: 961 MT Calculation: 969 MT

> @ Copyright 2017 Aonohakobi Technology Institute

Sea margin estimation

- Example of LNG carrier -

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Sea margin estimation

- Example of cape size bulk carrier -

Simulation results show conventional sea margins are much larger than required for some routes

- 1. Introduction of NYK/MTI
- 2. IoT and Big data in NYK
- 3. Digital Twin
- 4. Digital Twin of vessel performance
- 5. Summary

Flow of vessel performance analysis and usage

The future challenge would be how to feedback these knowledge and experience to ship design

Thank you very much for your attention

