

24th National Maritime Summit In Haugesund, Norway

Digitalization in Shipping - the future as seen by Nippon Yusen Kaisha (NYK) a global shipping company -

8th February 2017

Hideyuki Ando

MTI (Monohakobi Technology Institute), NYK Group

Outline

- 1. Introduction of NYK/MTI
- 2. Digitalization in Shipping
- 3. Activities for digitalization in NYK
- 4. Open platform

Outline

1. Introduction of NYK/MTI

- 2. Digitalization in Shipping
- 3. Activities for digitalization in NYK
- 4. Open platform

NYK Corporate Profile

- NYK Line (Nippon Yusen Kaisha)
- Head Office: Tokyo, Japan
- Founded: September 29, 1885
- Business Scope:
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 34,270 (as of the end of March 2016)
- Revenues: \$ 22.7 billion (Fiscal 2015)

NYK Head Office in Tokyo

NYK Fleet (as of the end of March 2016)

Containerships (including semicontainerships and others) 99 vessels / 5,820,781 DWT

Bulk Carriers (Capesize) 108 vessels / 21,248,606 DWT

Bulk Carriers (Panamax & Handysize) 269 vessels / 16,411,393 DWT

Wood-chip Carriers 47 vessels / 2,509,047 DWT

Cruise Ships 1 Vessel / 7,548 DWT

Car Carriers 119 vessels / 2,165,138 DWT

Tankers

68 vessels / 11,030,601 DWT

LNG Carriers 29 vessels / 2,176,681 DWT

Others

42 vessels / 695,974 DWT

782 vessels 62,065,769Kt (DWT)

MTI (Monohakobi Technology Institute)

- strategic R&D arm of NYK Line -

http://www.monohakobi.com/en/

- Established : April 1, 2004
- Stockholder : NYK Line (100%)
- Number of employees : 62 (as of 1st April, 2016)
- Location
 - Head Office : 7th Fl., Yusen Building, Tokyo, Japan
 - MTI CO., LTD. SINGAPORE BRANCH, Singapore
 - MTI YOKOHAMA LAB (Transportation Environment Lab), Yokohama, Japan

NYK SUPER ECO SHIP 2030 (Concept ship for the future 69% less CO2 emissions)

Monohakobi

Outline

- 1. Introduction of NYK/MTI
- 2. Digitalization in Shipping
- 3. Activities for digitalization in NYK
- 4. Open platform

Digitalization - the next techno-economic great wave

1. Use assets more efficiently

- 1. Automate ship operations & navigation
- 2. Manage ship/shore personnel into a single more productive team
- 3. Integrate fleet systems to improve asset performance
- 4. Use big data to find ways to improve performance & reduce accidents
- 5. Inform management on how the business is performing
- 2. Produce regulatory information digitally
- 3. Develop global through transport system

Reference)

Martin Stopford, Shipping's Next Techno-Economic Great Wave, Tokyo, Dec 2015 (http://www.jpmac.or.jp/forum/pdf/106_1.pdf)

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" where user can access the field data.

Digital Twin

An approach of Product Lifecycle Management(PLM) to extend computerbased engineering capabilities to fleet operations

Reference)

1. http://www.gereports.com/post/119300678660/wind-in-the-cloud-how-the-digital-wind-farm-will/

2. Michael Grieves, Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management (English Edition), 2012

Utilize IoT in shipping

<u>Target</u>

- Prevent unpredicted downtime (owner)
- Reduce maintenance cost (owner)
- Energy efficiency in operation (operator)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics
- Digital twin

Change way of working !

IoT and Big data application in shipping

Role	Function	Example of IoT and Big data application	
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 	
	New building	Design optimization	
Ship operator	Operation	 Energy saving operation Safe operation Schedule management 	
	Fleet planning	Fleet planningService planningChartering	

Other partners in value chains, such as cargo owners, shipyards, equipment manufacturers, and class societies, have also interests in ship IoT and Big data.

Outline

- 1. Introduction of NYK/MTI
- 2. Digitalization in Shipping
- 3. Activities for digitalization in NYK
- 4. Open platform

IoT platform of NYK SIMS (Ship Information Management System) SIMS IoT data + SPAS manual data **Data Center SIMS Data Collection SIMS Monitoring & Analysis** Sat Com Onboard at Shore (VSAT, FBB) Operation (Tokyo, Singapore ...) GPS • Doppler log **SIMS** unit Anemometer Analysis (IoT gateway) **Big data analysis** Gyro Compass 3.81 report **Operational efficiency** Onboard dashboard and the second s Performance na William Charles Engine & plant Shore Dashboard VDR condition - For operation Data Acquisition and Motion sensor - For ship manager Processing <Navigation Bridge> Technical Analysis (NYK, MTI) <Engine Room & Cargo> • Main Engine • Power plant Integrated Automation Cargo control System • Auxiliary machineries

2015 @ Copyright @ Ionohakobi Technology Institute

Ship performance in service

6000TEU Container Ship

Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

@ engine rev. 55rpm <Calm sea performance> speed: 14 knot FOC*: 45 ton/day *FOC: Fuel Oil Consumption * FOC: Fuel Sea(BF8) performance> speed: 8 knot

FOC: 60 ton/day

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

In-service ship performance model

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed	wave height	wave period
BF0	0.0	0.0	0.0
BF3	4.5	0.6	3.0
BF4	6.8	1.0	3.9
BF5	9.4	2.0	5.5
BF6	12.4	3.0	6.7
BF7	15.6	4.0	7.7
BF8	19.0	5.5	9.1
BF9	22.7	7.0	10.2

0deg (wind, wave) - head sea

Operation optimization

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Energy saving hull modification

23 % CO2 reduction was confirmed

Operation profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

Prognostics and health monitoring in shipping for preventing troubles

<u>Target</u>

- Prevent unpredicted downtime
- Reduce maintenance cost
- Predict remaining useful life

<u>Measure</u>

- SCADA data analysis
- Condition monitoring (image, vibration, AE and etc.)
- Estimate RUL (Remaining of Useful Life)

Reference)

- 1. Prognosticating fault development rate in wind turbine generator bearings using local trend models (B&K Vibro, DTU), PHM Europe 2016, pp. 132-141
- 2. https://theta360.com/s/f41xbUZ4smDJX4wsFh7gNUuZg?view=embed

KIRARI NINJA 360-degree panoramic camera to take photos inside the dark combustion chamber

Prognostics and health monitoring in shipping for preventing troubles

1. Prognosticating fault development rate in wind turbine generator bearings using local trend models (B&K Vibro, DTU), PHM Europe 2016, pp. 132-141

2. https://theta360.com/s/f41xbUZ4smDJX4wsFh7gNUuZg?view=embed

KIRARI NINJA 360-degree panoramic camera to take photos inside the dark combustion chamber

Outline

- 1. Introduction of NYK/MTI
- 2. Digitalization in Shipping
- 3. Activities for digitalization in NYK
- 4. Open platform

- Open collaboration with industry partners -

i-Shipping: Japanese government funding projects Ship IoT for safety (2016-2020)

Simulation of LNG cargo transport

Cargo crane condition monitoring

Multi-layered Doppler log

Structural Health Monitoring

ision avoidance

and autonomous ship

Propulsive efficiency monitoring

Open platform for maritime industry

2015 @ Copyright @ nohakobi Technology Institute

Standardization activities of Ship IoT platform (SSAP2: <u>Smart Ship Application Platform 2 Project by JSMEA</u>)

Further collaborations for future

2015/03/28 14:49:46

In the coming era of ship intelligence, we need open collaborations with wide variety of partners to seek possibilities of improving our safety and efficiency

Thank you very much for your attention

