

Hullpic 2017

Vessel Performance Model and its Utilization in Shipping Company

27th March 2017

Takashi Yonezawa (MTI)

Hideyuki Ando (MTI) Ryo Kakuta (MTI Singapore)

Outline

- 1. Introduction of NYK/MTI
- 2. Vessel Performance Management System
- 3. Vessel Performance Model
- 4. Utilization of vessel performance model
- 5. Conclusion

NYK Corporate Profile

- NYK Line (Nippon Yusen Kaisha)
- Head Office: Tokyo, Japan
- Founded: September 29, 1885
- Business Scope:
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 1,583 (NYK, as of the end of March 2016)

34,276 (NYK Group, as of the end of March 2016)

Revenues: \$ 22.7 billion (Fiscal 2015)

NYK Head Office in Tokyo

NYK Fleet (as of the end of March 2016)

Containerships (including semicontainerships and others) 99 vessels / 5,820,781 DWT

Bulk Carriers (Capesize) 108 vessels / 21,248,606 DWT

Bulk Carriers (Panamax & Handysize) 269 vessels / 16,411,393 DWT

Wood-chip Carriers 47 vessels / 2,509,047 DWT

Cruise Ships 1 Vessel / 7,548 DWT

Car Carriers 119 vessels / 2,165,138 DWT

Tankers

68 vessels / 11,030,601 DWT

LNG Carriers 29 vessels / 2,176,681 DWT

Others

42 vessels / 695,974 DWT

782 vessels 62,065,769Kt (DWT)

MTI (Monohakobi Technology Institute)

- strategic R&D arm of NYK Line -

http://www.monohakobi.com/en/

- Established : April 1, 2004
- Stockholder : NYK Line (100%)
- Number of employees : 62 (as of 1st April, 2016)
- Location
 - Head Office : 7th Fl., Yusen Building, Tokyo, Japan
 - MTI CO., LTD. SINGAPORE BRANCH, Singapore
 - MTI YOKOHAMA LAB (Transportation Environment Lab), Yokohama, Japan

Multi Cargo Simulator At YOKOHAMA LAB

NYK SUPER ECO SHIP 2030 (Concept ship for the future 69% less CO2 emissions)

Outline

- 1. Introduction of NYK/MTI
- 2. Vessel Performance Management System
- 3. Vessel Performance Model
- 4. Utilization of vessel performance model
- 5. Conclusion

Digital Twin – Utilization of IoT in other industries

An approach of Product Lifecycle Management(PLM) to extend computerbased engineering capabilities to operations

Reference)

- 1. <u>http://www.gereports.com/post/119300678660/wind-in-the-cloud-how-the-digital-wind-farm-will/</u>
- 2. Michael Grieves, Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management (English Edition), 2012

Vessel Performance Management System

- Auto-log system on board
- Dashboard for ship and office
- Recommendation for fuel saving
 - Optimum trim

Utilize IoT in shipping

<u>Target</u>

- Energy efficiency in operation
- Prevent unpredicted downtime
- Reduce maintenance cost

<u>Measure</u>

- <u>Digital twin</u>
- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

2017 @ Copyright onohakobi Technology Institute

Example of VPMS: SIMS(Ship Information Management System) IoT Platform of NYK

Outline

- 1. Introduction of NYK/MTI
- 2. Vessel Performance Management System
- 3. Vessel Performance Model
- 4. Utilization of vessel performance model
- 5. Conclusion

Requirement to "Digital Twin" of vessel performance

- The following factors must be included in vessel performance model
 - Effect of speed
 - Effect of draft
 - Effect of weather

Conventional "speed-consumption" curve includes only effect of speed

Difference of two similar size container vessels' operation profile deployed in different service

Expectation to "Digital Twin" in shipping company

- Digital twin for estimating vessel performance in actual service condition is most expected
 - In-service performance model
- Vessel operators need accurate operational cost estimation for various decision making
 - Vessel deployment
 - Vessel chartering
 - Service schedule design

Vessel performance model as "Digital Twin"

Development methods of performance model

- 1. Towing tank test or/and CFD
- 2. Estimation by ship design data
- 3. Estimation by using measurement data

Continuous model to represent discrete performance data – draft and trim

Extend 3-dimensional B-spline volume to multi-dimensional volume to represent continuous data (Joint research with AIST)

Theoretical estimation of wind and wave effect (Joint research with NMRI)

Considered forces and moments

- 1. Resistance in still water
- 2. Hydrodynamic forces and moments
- 3. Propeller thrust
- 4. Rudder forces and moment
- 5. Wind resistance
- 6. Added resistance in short crested irregular waves

$$X = X_{0}(V_{S}) + X_{D}(\beta) + (1-t)X_{P}(N_{P},V_{S}) + X_{R}(\beta,\delta) + X_{A}(V_{r},\gamma_{r}) - R_{AW}(V_{S},\beta;H,T,\theta)$$
(27)

$$Y = Y_D(\beta) + Y_R(\beta, \delta) + Y_A(V_r, \gamma_r)$$
(28)

$$N = N_D(\beta) + N_R(\beta, \delta) + N_A(V_r, \gamma_r)$$
(29)

Reference) M. Tsujimoto, et.al,: Development of a Calculation Method for Fuel Consumption of Ships in Actual Seas With Performance Evaluation, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering(OMAE),2013

Performance model correction

Before Correction

Baseline performance analysis by SIMS data

- ✓ Data filtering
- ✓ Weather correction

After Correction

Update of all weather performance model

The performance model is periodically corrected by statistical regression of measurement data

17

@ Copyright 2017 echnology Institute

An example of model validation

Container vessel

Voyage: OAKLAND-TOKYO

Accuracy of vessel performance model was confirmed.

Outline

- 1. Introduction of NYK/MTI
- 2. Vessel Performance Management System
- 3. Vessel Performance Model
- 4. Utilization of vessel performance model
- 5. Conclusion

Utilization of vessel performance model

- Sea margin estimation Service route/schedule

Vessel performance model

Hindcast weather data

Estimation of

- Sea Margin
- Sailing time
- Average Speed
- Total FOC

Accurate sea-margin estimation is useful for various decision making of ship operators

Sea margin estimation based on voyage simulation - Example of cape size bulk carrier -

Simulation results show conventional sea margins are much larger than required for some routes

Collision avoidance

and autonomous ship

NYK/MTI's R&D activities for digitalization

- Open collaboration with industry partners -

i-Shipping: Japanese government funding projects Ship IoT for safety (2016-2020)

Simulation of LNG cargo transport

Cargo crane condition monitoring

Apply "Digital Twin" concept to other areas.

Multi-layered Doppler log

Structural Health Monitoring

Damage prevention of enginepower plant Propulsive efficiency monitoring

@ Copyright 2017 Ionohakobi Technology Institute

Open platform for maritime industry

2017 @ Copyright 0 nohakobi Technology Institute

Outline

- 1. Introduction of NYK/MTI
- 2. Vessel Performance Management System
- 3. Vessel Performance Model
- 4. Utilization of vessel performance model
- 5. Conclusion

Conclusion

- Concept of "Digital Twin" can be applied to shipping
- Vessel operators require in-service performance model as "Digital Twin" for estimating operational cost accurately
- Vessel performance models have been developed in NYK and utilized in business decision making
- Application of "Digital Twin" will be expanded to other areas of vessel such as engine and LNG cargo
 - Open collaboration using IoT open platform will contribute to digitalization of whole vessel

Thank you for your attention

