13th June 2017

Activities of Smart Ship Application Platform 2 Project (SSAP2)

Jungo Shibata / Hideyuki Ando (The Chair of SSAP2) Maritime Technology group, MTI Co. Ltd.,

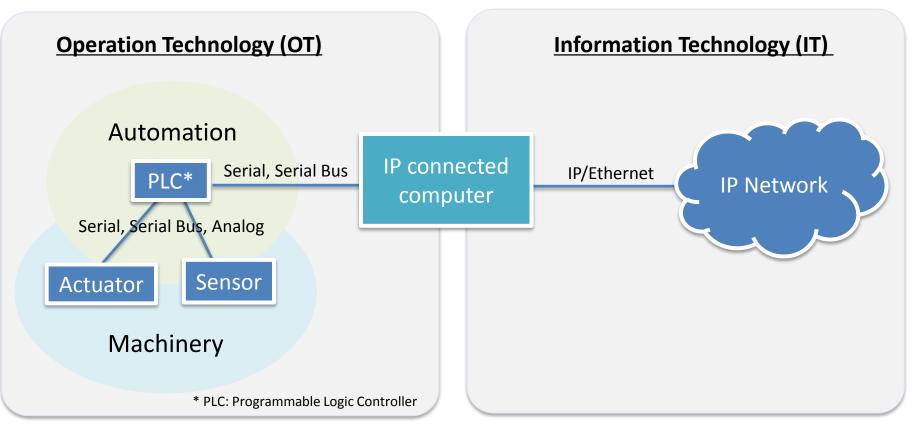
Background

Onboard and Shore IoT application services, which rely on ship onboard equipment data,

have become much more expanding.

- Weather routing
- Optimum trim
- Performance monitoring
- Engine monitoring
- Condition monitoring
- Power plant energy management
- Remote maintenance

Smart Ship and SSAP


The concept of Smart Ship is to utilize Ship IoT application services to achieve optimum ship operation in terms of safety and energy efficiency.

The target of SSAP (SSAP & SSAP2) projects is to support these Ship IoT application services in order to access ship equipment data easily and to enhance developing further application services for a better stage.

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" in which user can access field data.

Coming IoT applications in marine industry


<u>Target</u>

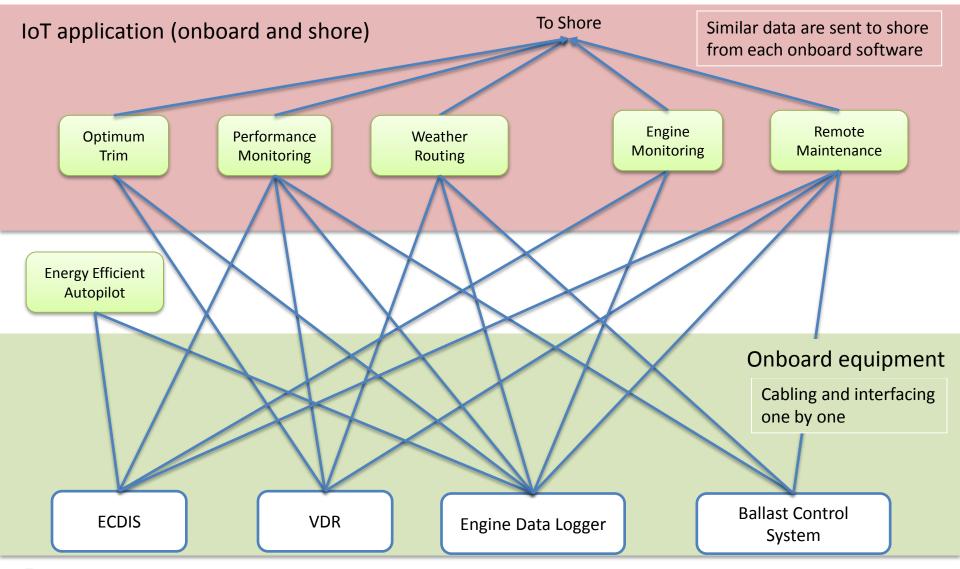
- Prevent unpredicted downtime
- Reduce maintenance cost
- Energy efficiency in operation

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics

Working style will be changed

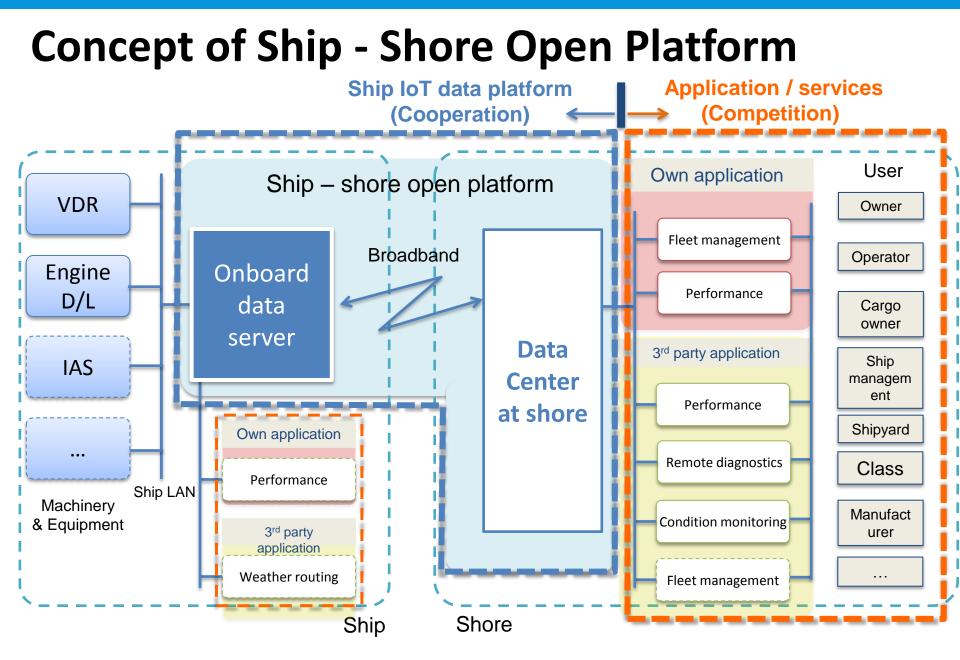
IoT and Big data applications


Role	Function	Example of IoT and Big data application			
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 			
	New building	Design optimization			
Ship operator	Operation	Energy saving operationSafe operationSchedule management			
	Fleet planning	Fleet allocationService planningChartering			
Shipyard	In-service ship	Ship performance analysis			
	New building	Design optimization			
Manufacturer	Maintenance	Remote monitoring & diagnosis			

Other partners in value chains, such as cargo owners, class societies, have also interests in ship Big data. With acceptance of IoT data owner, normally ship owner, Ship IoT will become prevalent.

IoT application installation (now)

IoT application installation (future - SSAP2 target)


IoT application (onboard) Engine Weather Optimum Performance Monitoring Maintenance Trim Monitoring Routing Ship Equipment LAN for IoT Application **Energy Efficient** Autopilot Shipboard data To Shore Open Platform Router (via satcom) F/W server **Onboard** equipment Ship Equipment LAN **Ballast Control ECDIS** VDR **Engine Data Logger**

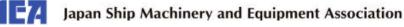
Japan Ship Machinery and Equipment Association

System

Remote

What are the benefits of such platform ?

- ✓ Application providers can easily provide onboard and shore application software / services
- Equipment manufacturers can easily provide their services, such as remote maintenance
 Ship owners can get remote maintenance supports directly from manufacturers
- ✓ Ship owners investment cost (CAPEX and OPEX) for onboard applications and shore services will be lower economized
 - -> More big data applications will be used
- ✓ Shipyards and equipment manufactures can collect data from running equipment
 - -> Better understanding for service performances
- ✓ Ship owners can manage/control ship data transmission to shore
- ✓ Standardized format and protocol will enhance application development


SSAP1 Project

(Smart Ship Application Platform 1 Project)

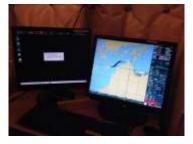
- Participants
 - Members: 27 organizations
 - Observers: 9 organizations
- Schedule

– Dec. 2012 – Mar. 2015

- Joint Industry Project supported by JSMEA + Class NK
- Achievements
 - Design specification of shipboard data server
 - Implementation of shipboard data server and trials on 2 domestic vessels
 - Ship shore open platform design for ship IoT
 - Proposed 2 ISO NPs (ISO NP19847 / ISO NP19848)

Onboard trials in SSAP1 (2014)

RORO Ferry SUNFLOWER SHIRETOKO

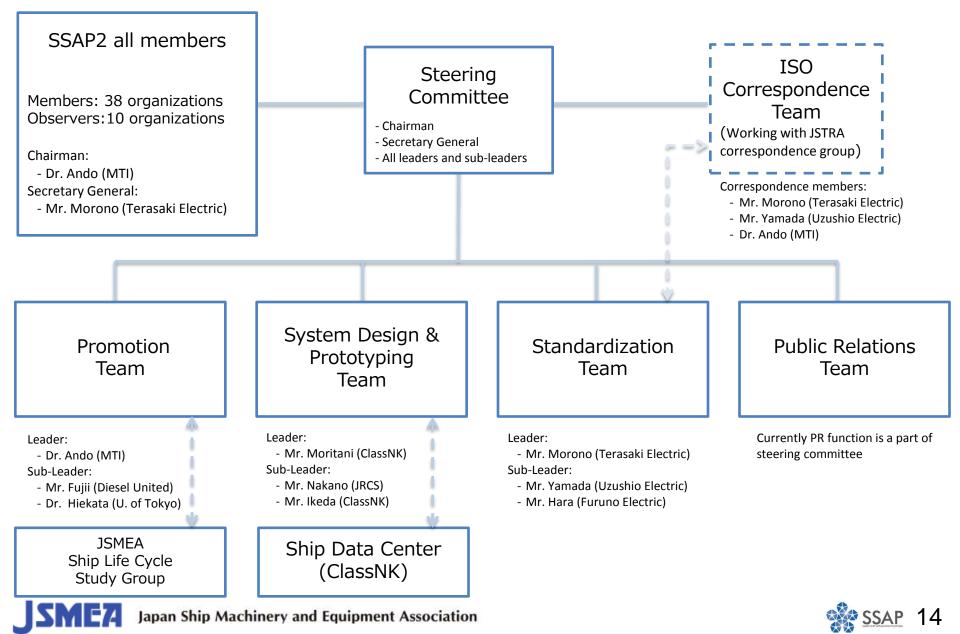


Crude-Oil Tanker SHINKYOKUTO MARU

SSAP2 Project

(Smart Ship Application Platform 2 Project)

• Participants

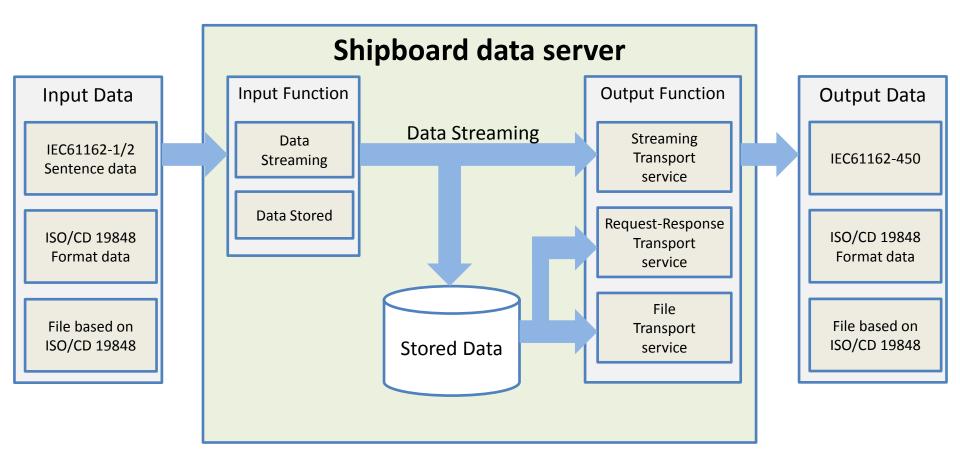

- Members: 38 organizations
- Observers: 10 organizations
- Schedule

- Aug. 2015 - Sep. 2017

- Joint Industry Project supported by JSMEA + Class NK
- Action items
 - 1. Promotion of SSAP2 concept
 - 2. System design and prototyping of SSAP2
 - 3. Standardization ISO DIS19847/DIS19848
 - 4. Public relation

Organization of SSAP2 Project

ISO DIS 19847/19848 for Ship IoT Ship IoT data platform **Application / services** (Competition) (Cooperation) User **Own application** Ship – shore open platform **VDR** Owner Fleet management Broadband Operator Onboard Engine data Performance D/L Cargo server owner (standardized) Ship 3rd party application Ship IAS managem **New ISO regarding Ship IoT** Own applicatio ISO/DIS19847 - Shipboard data servers to share field data on the sea Performance Specifications of ship onboard data server Ship LAN Machinery 3rd party Equipment ISO/DIS19848 - Standard data for machinery and equipment part of ship application Specifications of dictionary and format Weather routin Ship Shore



ISO DIS 19847

Shipboard data servers to share field data on the sea

• Requirements for shipboard data servers to collect and share field data

ISO DIS 19848

 Standardized ID of sensors, common data model & format

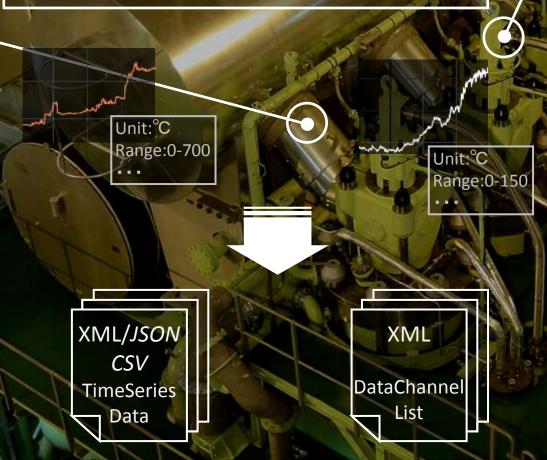
ID of sensors

- URL compliant naming scheme
- Dictionaries (*informative*)
 - JSMEA
 - DNV-GL

Data model

- Data channel list (meta data)
- Time series data (data)

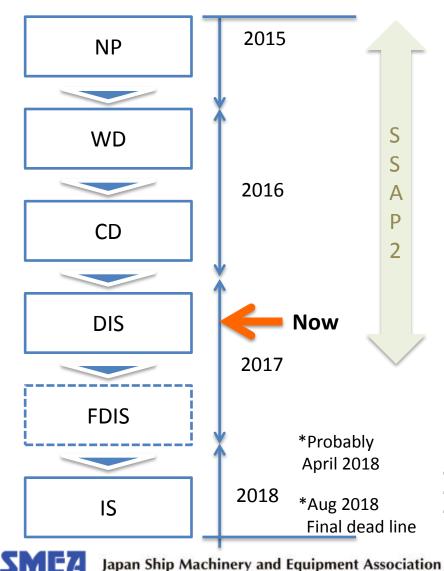
• Data format


- XML with schema definition
- JSON (informative)
- CSV (informative)

Naming rule & data standard –

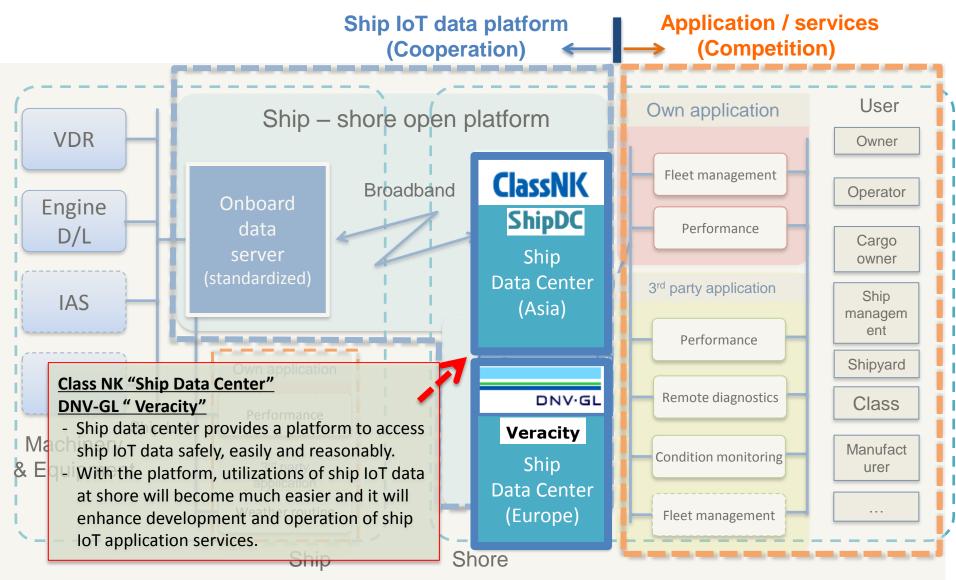
http://IMO1234567/MainEngine/Cylinder2FO/In/Temp

http://IMO1234567/MainEngine/Cylinder1/ExhaustGas/Temp

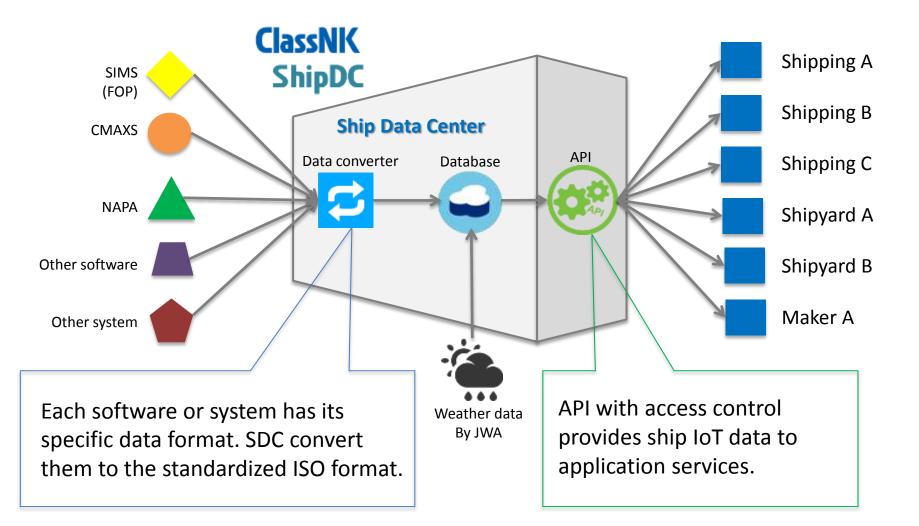

Policy of standardization

Corroborate and harmonize with

- Existing standards
 - IEC61162-450/460(Digital Interface Part 450 Multiple taker and multiple listeners – Ethernet interconnection)
 - ISO16425 (Guidelines for the installation of ship communication networks for shipboard equipment and systems)
- New proposed standards
 - IHO S-100series
 - IEC BAM(Bridge alert management Operational and performance requirements, methods of testing and required test results)
- Associated projects / Organization
 - e-Navigation(IALA)
 - SMART-Navigation(Korea)
 - IEC etc.,
- Cyber security discussions


Process for ISO (ISO 19847, ISO 19848) *

- ISO PWI 19847/19848 were accepted as NP in Aug. 2015
- 2 CDs were accepted as DIS in Nov. 2016
- 2 DISs will be distributed for comment and voting to the members of ISO/TC8/SC6 in June. 2017
- NP: New work item Proposal, WD: Working Draft
 CD: Committee Draft, DIS: Draft International Standard
 FDIS: Final Draft International Standard, IS: International Standard



Ship Data Center at Shore

ClassNK Ship Data Center at Shore

Roadmap regarding digitalization toward 2020

	Торіс	2016	2017	2018	2019	2020
Application	R&D projects (e.g. i-Shipping in Japan and autonomous ships in Europe)	<	(Navigation, e	R&D projects ngine, hull, cargo, operat	ion and etc.)	>
	PHM ^{*1} services & products (Machinery & equipment)	Condi	tion monitoring and PH	M for main engine, mach	ineries and equipment.	>
	IT and IoT utilization in fleet operation	Integration of	ship with shore operati	on system. Optimization	, automation and simula	tion technologies.
Platform	Ship IoT standardization (ISO CD 19847/19848) and other ISOs	<iso 19<="" td=""><td>9847/19848</td><td>(FDIS)</td><td>Smart Ship related</td><td>ISOs ?</td></iso>	9847/19848	(FDIS)	Smart Ship related	ISOs ?
	Ship data center		<	Trials & (Operation	
Regulatory	Cyber security	ВІМСО	guideline, IMO MSC gui	deline, Class guideline ←	→ IACS Cyber Security Pa	nel
	MRV *2			<	IMO N EU MRV	MRV
	e-Navigation and autonomous ship regulations	Model development	Standardizatio Several autonomo	n 🕺 ous ship projects in Norw	mplementation Yay, Finland and in other	Operation nations

*1 PHM: Prognostics and Health Monitoring, *2 MRV: Monitoring Reporting and Verification

Summary

- JSMEA, Class NK, 38 member organizations and 10 observers are working together for SSAP2 (Smart Ship Application Platform 2) Project
- The aim of SSAP2 Project is to design and to implement an open platform for supporting Ship IoT service development and operation
- SSAP2 follows up ISO DIS 19847/ 19848 standardization process
- Ship Data Center is a platform for shore side Ship IoT applications.
 SSAP2 works closely with Ship Data Center to achieve the open platform concept.

Thank you very much for your attention

For further information, please contact

Mr. Takachika Bunya, bunya@jsmea.or.jp

JSMEA, Japan Ship Machinery and Equipment Association http://www.jsmea.or.jp/ssap

Ship Data Center(Class NK) http://www.shipdatacenter.com

