

Maritime Digitalization Summit China 2019

NYK's Approach To Maritime Digitalization

26th June 2019

Jungo Shibata MTI (NYK Group)

Outline

1. Introduction

- 2. IoT and Big data in Shipping
- 3. NYK's Activities for digitalization
- 4. Open Platform and Standardization
- 5. Way forward

NYK Corporate Profile

- NYK LINE (Nippon Yusen Kaisha)
 - Head Office: Tokyo, Japan
 - Founded: September 29, 1885
 - Business Scope
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 35,711 (as of the end of March 2019)
- Revenues: \$ 20.5 billion (Fiscal 2018)

NYK Head Office in Tokyo

NYK Fleet (as of the end of March 2019)

Container vessels (including semi-container ships and others) 63 vessels

Bulk Carriers (Capesize)

105 vessels

Bulk Carriers (Panamax & Handysize) 194 vessels

Wood-chip Carriers 44 vessels

Cruise Ship 1 vessel

118 vessels Tankers

56 vessels

LNG Carriers

75 vessels

Others

42 vessels

757 vessels (Owned 334 vessels)

MTI Company Profile

- MTI is "Monohakobi (= quality transport) Technology Institute"
- Established : April 1, 2004
- Equity capital : JPY 99 million
- Stockholder : NYK Line
- Number of employees : 70 (as of end of March, 2019)
- Head office : 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
- URL : www.monohakobi.com/en/

NYK SUPER ECO SHIP 2030 (69% less CO2 emission Concept ship for future)

SINGAPORE BRANCH

1 Harbourfront Place #13-01 HarbourFront Tower One Singapore 098633)

YOKOHAMA LAB.

(Transportation Environment Lab.) 5-32-84, Sugita, Isogo-ku, Yokohama, Kanagawa, Japan

Outline

1. Introduction

2. IoT and Big data in Shipping

- 3. NYK's Activities for digitalization
- 4. Open Platform and Standardization
- 5. Way forward

What is IoT and big data in shipping

Examples of IoT and bigdata in shipping <u>Voyage data</u>

- Automatically collected data (IoT)
- Noon report

Machinery data

- Automatically collected data (IoT)
- Manual report data
- Maintenance data / trouble data

AIS data

• Satellite AIS / shore AIS (IoT)

Weather data

- Forecast / past records
- Anemometer / wave measurement (IoT)

Business data

- Commercial data
- Market data

Utilize IoT data in shipping

Target

- Prevent unpredicted downtime (owner)
- Reduce maintenance cost (owner)
- Energy efficiency in operation (operator)

<u>Measure</u>

- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
 - Self diagnostics
- Digital twin

Change way of working !

<u>Methods of utilizing Big data #1</u> Identifying issues with deep domain knowledge, skill of data analytics and Big data

2019 @ Copyright @ nohakobi Technology Institute

Methods of utilizing Big data #2

The process of issue solving with domain knowledge, skill of data analytics and iterative prototyping. --> It is a collaborative process.

To realize the issue solving process, "Organizational Support" is necessity.

Methods of utilizing Big data #3

Operate and maintain data managing infrastructure

E.g. Data collection, error handling, data quality and data standardization.

Reference) DNV-GL, STANDARDISATION AS AN ENABLER OF DIGITALISATION IN THE MARITIME INDUSTRY, GROUP TECHNOLOGY & RESEARCH, POSITION PAPER 2017

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. NYK's Activities for digitalization
- 4. Open Platform and Standardization
- 5. Way forward

IOT Platform of NYK - Data Acquisition and Visualization -

Case1 Ship performance in service

6000TEU Container Ship

Monohakobi

Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

@ engine rev. 55rpm							
<calm performance="" sea=""></calm>							
speed:	14 knot						
FOC*:	45 ton/day						
* FOC: Fuel Oil Consumption							
<rough performance="" sea(bf8)=""></rough>							
speed:	8 knot						
FOC:	60 ton/day						

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

Monohakobi Technology Institute Case1 In-service ship performance model

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed	wave height	wave period					
	(m/s)	(m)	(sec)					
BF0	0.0	0.0	0.0					
BF3	4.5	0.6	3.0					
BF4	6.8	1.0	3.9					
BF5	9.4	2.0	5.5					
BF6	12.4	3.0	6.7					
BF7	15.6	4.0	7.7					
BF8	19.0	5.5	9.1					
BF9	22.7	7.0	10.2					

Odeg (wind, wave) – head sea

Estimate data

Ship performance model

Service route with past weather

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Case2 Improve bad performance ship

23 % CO2 reduction was confirmed

Operational profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Monohakobi

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

'Ship IoT data' will be more used not only for energy efficiency but also for improving safety

Case3 Anomaly detection from IoT data

- Find trouble phenomenon in engine & power plants -

Case) M/E (Main Engine) No.3 cylinder abnormal exhaust gas temperature

 Implement automatic anomaly detection function by using the accumulated data.

Monohakobi

Utilizing IoT data for safer operation Case4 - Open collaboration with industry partners -

nfrastructure, Transport and Touris

funding R&D projects – IoT for safety (2016-2020) Joint research with ClassNK

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. NYK's Activities for digitalization

4. Open Platform and Standardization

5. Way forward

Standardization activities of Ship IoT platform

(SSAP3: <u>Smart Ship Application Platform 3 Project by JSMEA</u>)

ISO19847 - Shipboard data servers to share field data at sea -

Requirements for shipboard data servers to collect and share field data

ISO19848 - Standard data for shipboard machinery and equipment -

Standardized ID of sensors, common data model & format

ID of sensors

- URL compliant naming scheme
- Dictionaries (*informative*)
 - JSMEA
 - DNV-GL

Data model

- Data channel list (meta data)
- Time series data (data)

Data format

- XML with schema definition
- JSON/CSV (informative)
- CSV (informative)

2019 @ Copyright @ Donohakobi Technology Institute

ShipDC

Internet of Ships (IoS) Open Platform

Roles are defined and each player provides their expertise on the Internet of Ships(IoS) platform. Data governance and business rules have been built by IoS-OP Consortium under ShipDC.

2019 @ Copyright onohakobi Technology Institute

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. NYK's Activities for digitalization
- 4. Open Platform and Standardization
- 5. Way forward

Way Future - Integrated bridge operation -

Objective

- Prevent collisions
- Reduce workloads of crews
- Contingency backup

<u>Measure</u>

- Integrated bridge system
- Enhanced situational awareness
- Advanced support system
- Manned Autonomous ship

Infrastructure & regulation are very important

AL₃

for

 onboard permission

required
 onboard

override possible

Cyber access

autonomous/ remote monitoring and control

Manned-Autonomous Ship

Provided by Japan Radio Co. Ltd.

- Advanced support system ... additional functions to assist cognitive process of human operator based on existing navigation system
- Autonomous operation under approval of human operator

Reference: 1) Lloyds Register, "Current and Emerging Cyber Risks facing Maritime Industries", European Maritime Cyber Risk Management Conference, London, June 2017

NYK/MTI and Japan Radio Co. Ltd. jointly developed navigation support tool that enables officers to better manage and share navigational information.

(Press Released at 17th May 2017)

- Gathering all necessary information for navigation by using IoT
- Integrated navigation information management system
- Contribution to safe & efficient navigation

<Features of J-Marine NeCST>

- 1. Handwritten inputs
- 2. Compatibility with ECDIS
- 3. Implementation of meteorological and hydrographical forecasts
- 4. Information sharing with other ships and land
- 5. Flexible customization

Cyber Security and Cyber Resilient Ship

Cyber risk management will need to be implemented. Protection of Industry Control System is crucial

The Guidelines on Cyber Security onboard Ships - Version 3, BIMCO – Nov 2018

Cyber security guidelines in shipping

- IMO, MSC (98) Cyber risk management onboard ships should be included in SMS as of 1 Jan 2021 (Jun 2017)
- **BIMCO** the guidelines on cyber security onboard ships version 3 (Nov 2018)
- ABS, DNV-GL, LR, BV etc. Guidelines and notations of cyber security onboard ships (2016)
- IEC 61162-460 Safety and security standards for navigation and radio communication equipment
- **IACS** Maritime Cyber System Recommendations (MCSR)

Cyber security guidelines

- NIST Framework and 800-53 computer security policies, procedures and guidelines
- ISO 27001/2 ISMS: Information Security Management System

 Realization of secure and efficient data-sharing platform between ship and shore.
 Raise of on-board cyber risk management level through ship and shore cooperation

NYK LINE	About Us	Services	Investor Relations	CSR	črK Group Iapanese	
TOP > News Releases > 2017 > NYK and	I Dualog Enters In	nto Strategi	c Partnership for Join	t innovation		> Japanese pa
NYK and Dualog Enters in	to Strategi	c Partn	ership for Joi	int Inno	vation	
						May 31, 2017
NYK, one of the largest shipping co and a leader in maritime innovatio world and Dualog, a cutting-edge i maritime IT, enters a strategic part	n in the nnovator in					9
The strategic partnership will focus the boundaries for automation, the Things (IoT) and for Big Data anal Together, the NYK Group and Dual the new digital platform at sea.	Internet of ysis.			842	4	
The partnership will centre on adva technology that will benefit the ma industry at large:			left, ; Mr. Morten Lind- 1s. Dilek Ayhan,	Olsen, CE	O of Dua	log
 Data gathering from an expanding board sensors and monitoring equil 		and Fish	minister of Norw herles	egian Mini	stry of Tr	ade, Industry

Fig.. Image of the ship-shore data sharing system

Source) NYK LINE (<u>https://www.nyk.com/english/news/2017/20170531_01.html</u>)

Thank you very much for your attention

