

IoT and Big data in shipping – an approach of NYK Line -

15th April 2019 BV AA Committee

Yasuo Tanaka, MTI

Outline

1. Introduction

- 2. IoT and Big data in Shipping
- 3. Platform for digitalization
- 4. NYK's view on Autonomous Ship

YK.

What NYK/MTI is

NYK Corporate Profile

- NYK LINE (Nippon Yusen Kaisha)
 - Head Office: Tokyo, Japan
 - Founded: September 29, 1885
 - Business Scope
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 34,270 (as of the end of March 2016)
- Revenues: \$ 22.7 billion (Fiscal 2015)

NYK Head Office in Tokyo

NYK

What NYK/MTI is

NYK Fleet (as of the end of March 2018)

Container ships (including semicontainer ships and others)

95 vessels / 6,700,000 DWT

Bulk Carriers (Capesize) 110 vessels / 21,615,000 DWT

Bulk Carriers (Panamax & Handysize) 251 vessels / 15,399,000 DWT

Wood-chip Carriers 42 vessels / 2,267,000 DWT

Cruise Ship 1 vessel / 7,000 DWT

Car Carriers 119 vessels / 2,183,000 DWT

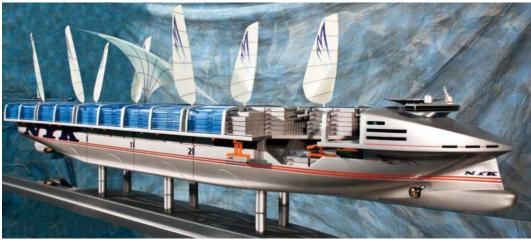
Tankers

65 vessels / 10,207,000 DWT

29 vessels / 2,185,000 DWT

Others

43 vessels / 708,000 DWT


755 vessels 61,275 KT (1,000 DWT)

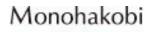
What NYK/MTI is

Monohakobi Technology Institute

MTI Company Profile

- MTI is "Monohakobi (= quality transport) Technology Institute"
- Established : April 1, 2004
- Equity capital : JPY 99 million
- Stockholder : NYK Line
- Number of employees : 62 (as of 1st April, 2016)
- Head office : 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
- URL : www.monohakobi.com/en/

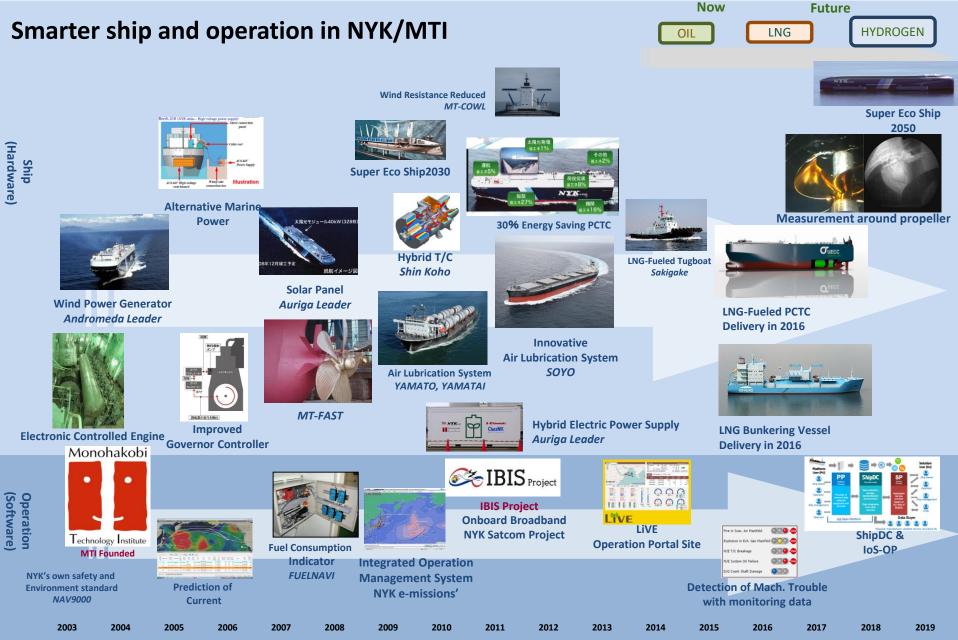
NYK SUPER ECO SHIP 2030 (Concept ship for the future 69% less CO2 emissions)


SINGAPORE BRANCH

- 1 Harbour
- Front Place #13-01
- HarbourFront Tower One
- Singapore (098633)

YOKOHAMA LAB

- (Transportation Environment Lab)
- 5-32-84, Sugita, Isogo-ku, Yokohama,
- Kanagawa, Japan



Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Platform for digitalization
- 4. NYK's view on Autonomous Ship

IoT platform of NYK SIMS (Ship Information Management System) SIMS IoT data + SPAS manual data **Data Center SIMS Data Collection SIMS Monitoring & Analysis** Sat Com Onboard at Shore (VSAT, FBB) **Operation Center** (Tokyo, Singapore ...) GPS • Doppler log Anemometer Analysis **SIMS** unit Gyro Compass 3.81 **Performance Analysis** Onboard dashboard Long term analysis In service performance Shore Dashboard VDR - For operation Data Acquisition and Motion sensor - For ship manager Processing <Navigation Bridge> Technical Analysis (NYK, MTI) <Engine Room & Cargo> Main Engine Power plant Integrated Automation Cargo control System • Auxiliary machineries

Ship performance in service

6000TEU Container Ship

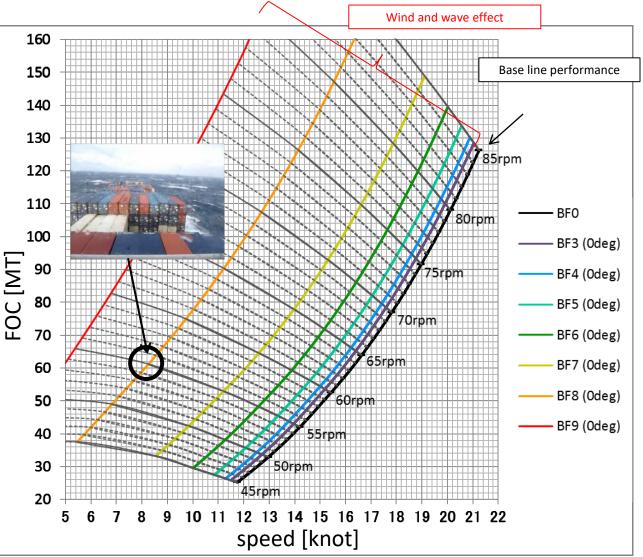
Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

@ engine rev. 55rpm					
<calm performance="" sea=""></calm>					
speed:	14 knot				
FOC*:	45 ton/day				
* FOC: Fuel Oil Consumption					
<rough performance="" sea(bf8)=""></rough>					
speed:	8 knot				
FOC:	60 ton/day				

Effecting factors

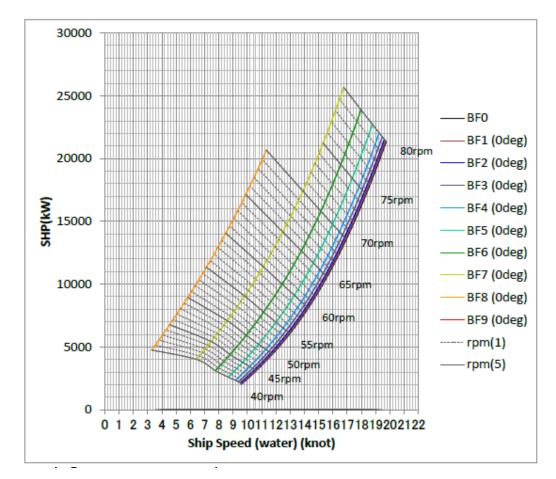
1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)


<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

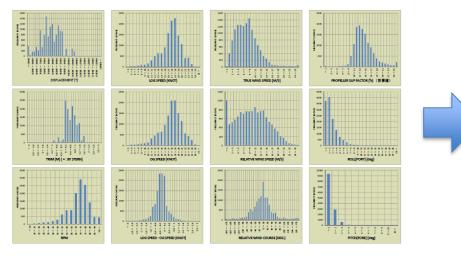
	wind speed wave height		wave period			
	(m/s)	(m)	(sec)			
BF0	0.0	0.0	0.0			
BF3	4.5	0.6	3.0			
BF4	6.8	1.0	3.9			
BF5	9.4	2.0	5.5			
BF6	12.4	3.0	6.7			
BF7	15.6	4.0	7.7			
BF8	19.0	5.5	9.1			
BF9	22.7	7.0	10.2			

Odeg (wind, wave) – head sea



Estimation of seasonal sea margin

Ship performance model



Combine ship performance model with weather data to run simulations

Improve bad performance ship

23 % CO2 reduction was confirmed

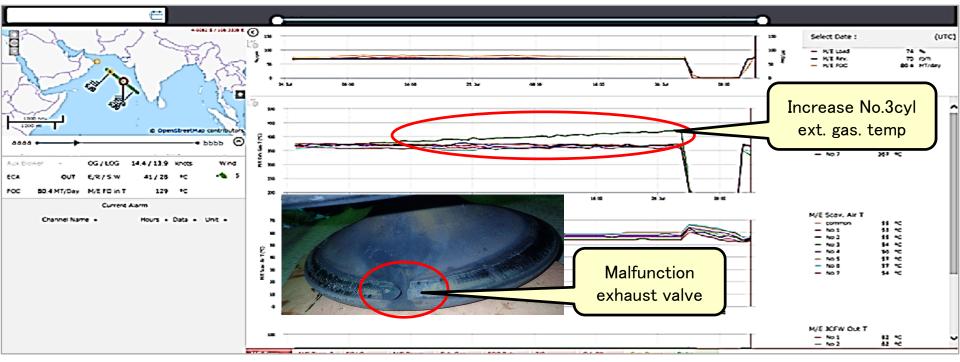
Operational profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

'Digital Twin' will be more used not only for energy efficiency but also for improving safety



Anomaly detection from IoT data

- Find trouble phenomenon in engine & power plants -

Case) M/E (Main Engine) No.3 cylinder abnormal exhaust gas temperature

- 1. Visualization of data
- 2. Analysis by domain experts (marine engineer) . Accumulate cases.
- 3. Implement automatic anomaly detection function by using the accumulated data.

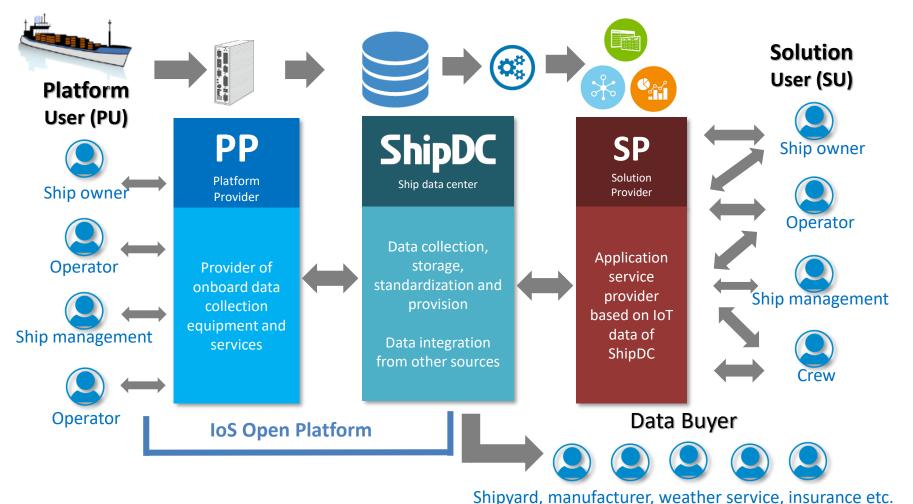
Utilizing IoT data for safer operation

- Open collaboration with industry partners -

Joint research with ClassNK

Outline

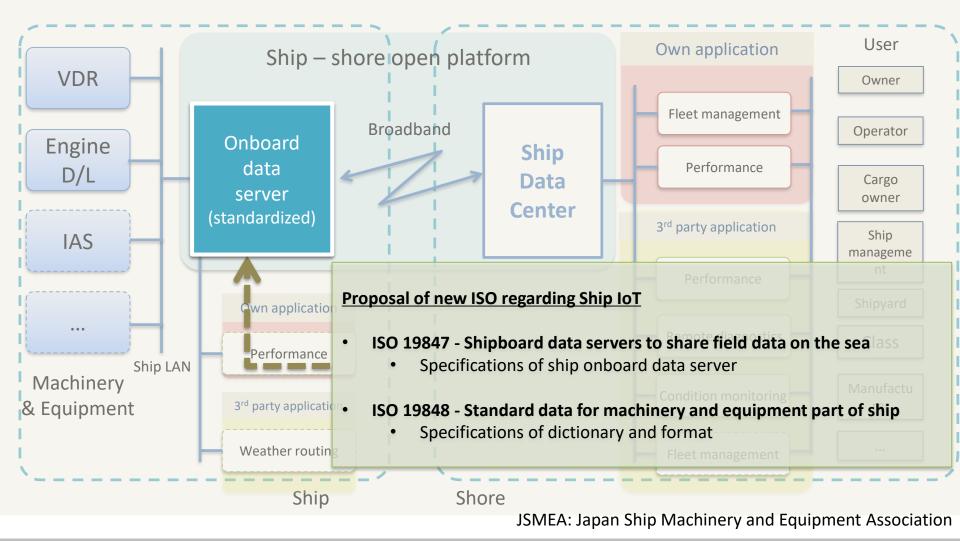
- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Platform for digitalization
- 4. NYK's view on Autonomous Ship



ShipDC

Internet of Ships (IoS) Open Platform

Roles are defined and each player provides their expertise on the Internet of Ship(IoS) platform. Data governance and business rules have been built by IoS OP Consortium under ShipDC.



@ Copyright 2019 onohakobi Technology Institute

Standardization activities of Ship IoT platform (SSAP3: <u>Smart Ship Application Platform 3 Project by JSMEA</u>)

Cyber Security

Cyber risk management will need to be implemented. Protection of Industry Control System is crucial

The Guidelines on Cyber Security onboard Ships - Version 3, BIMCO – Nov 2018

Cyber security guidelines in shipping

- **IMO, MSC (98)** Cyber risk management onboard ships should be included in SMS as of 1 Jan 2021 (Jun 2017)
- **BIMCO** the guidelines on cyber security onboard ships version 3 (Nov 2018)
- ABS, DNV-GL, LR, BV etc. Guidelines and notations of cyber security onboard ships (2016)
- IEC 61162-460 Safety and security standards for navigation and radio communication equipment
- **IACS** Maritime Cyber System Recommendations (MCSR)

Cyber security guidelines

- **NIST Framework and 800-53** computer security policies, procedures and guidelines
- ISO 27001/2 ISMS: Information Security Management System

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Platform for digitalization
- 4. NYK's view on Autonomous Ship

Integrated Navigation Support System J-Marine NeCST

NYK/MTI and Japan Radio Co. Ltd. jointly developed navigation support tool that enables officers to better manage and share navigational information (Press Released at 17th May 2017)

- Gathering all necessary information for navigation by using IoT
- Integrated navigation information management system
- Contribution to safe & efficient navigation

<Features of J-Marine NeCST>

- 1. Handwritten inputs
- 2. Compatibility with ECDIS
- 3. Implementation of meteorological and hydrographical forecasts
- 4. Information sharing with other ships and land
- 5. Flexible customization

AL₃

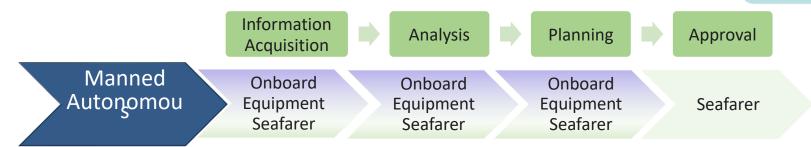
for

 onboard permission

requiredonboard

override possible

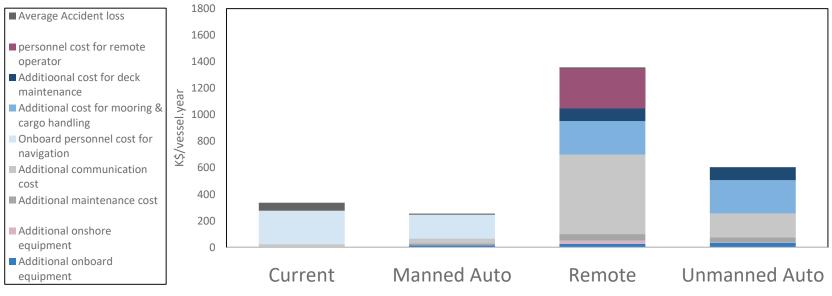
Cyber access


autonomous/ remote monitoring and control

Manned-Autonomous Ship

Provided by Japan Radio Co. Ltd.

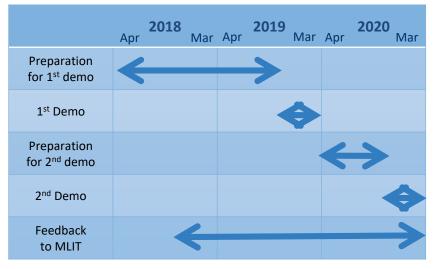
- Advanced support system ... additional functions to assist cognitive process of human operator based on existing navigation system
- Autonomous operation under approval of human operator


Reference: 1) Lloyds Register, "Current and Emerging Cyber Risks facing Maritime Industries", European Maritime Cyber Risk Management Conference, London, June 2017

Economic evaluation (case: deep-sea going vessel)

Based on our feasibility study, at the current stage, manned-autonomous navigation has the highest economic performance with practicability.

Cost efficiency	Base	+		—
Incident risk	Base	+	+	++
Workload	Base	+	++	++
Cyber risk	Base	Base		—
Total reliability	Base	+	—	—


Demonstration Project in Japan t/w MLIT

- Objective: Demonstrate APS concept
- Target ship: Tug boat (Wing Maritime Service Corp.)
- Period: 2018 2020

Monohakobi Technology Institute

- Project members: company name (role)
 - 1. MTI (project coordinator/concept design)
 - 2. JMS (project coordinator/simulator)
 - 3. NYK (project coordinator/ship owner)
 - 4. IKOUS (ship owner)
 - 5. Furuno Electric (navigation equipment)
 - 6. Japan Radio (navigation equipment)
 - 7. Tokyo Keiki (navigation equipment)
 - 8. BEMAC (DPS)
 - 9. Keihin Dock (shipyard)
 - 10. Mitsubishi Shipbuilding (engineering)
 - 11.Sky Perfect JSAT (satellite communication)
 - 12.NTT DoCoMo (4G/5G network)
 - 13.NTT (system provider)
 - 14. Niigata Power Systems (propulsion)
 - 15.ClassNK (verifier)
 - 16.NMRI (risk assessment)

Demonstrations in 2019 Winter (the 1st demo) and 2020 Winter (the 2nd demo) are the targets.

Thank you very much for your attention