

IoT and Big data in shipping – an approach of NYK Line -

23th September 2019 PRADS2019

Yasuo Tanaka, MTI

Outline

1. Introduction

- 2. IoT and Big data in Shipping
- 3. Autonomous Ship and system integration
- 4. What's more

DYK.

What NYK/MTI is

NYK Corporate Profile

- NYK LINE (Nippon Yusen Kaisha)
 - Head Office: Tokyo, Japan
 - Founded: September 29, 1885
 - Business Scope
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 35,711 (as of the end of March 2019)
- Revenues: \$ 21.8 billion (Fiscal 2018)

NYK Head Office in Tokyo

What NYK/MTI is

NYK Fleet (as of the end of March 2019)

Container ships (including semicontainer ships and others)

63 vessels / 5,200,000 DWT

Bulk Carriers (Capesize) 105 vessels / 20,200,000 DWT

Bulk Carriers (Panamax & Handysize) 252 vessels / 15,392,000 DWT

Wood-chip Carriers 44 vessels / 2,382,000 DWT

Cruise Ship 1 vessel / 7,000 DWT

710 vessels 67,341 KT (1,000 DWT)

Car Carriers 118 vessels / 2,200,000 DWT Tankers 56 vessels / 19,050,000 DWT LNG Carriers 29 vessels / 2,209,000 DWT

Others

42 vessels / 701,000 DWT

What NYK/MTI is

Monohakobi Technology Institute

MTI Company Profile

- MTI is "Monohakobi (= quality transport) Technology Institute"
- Established : April 1, 2004
- Equity capital : JPY 99 million
- Stockholder : NYK Line
- Number of employees : 76 (as of 1st September, 2019)
- Head office : 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
- URL : www.monohakobi.com/en/

NYK SUPER ECO SHIP 2030 (Concept ship for the future 69% less CO2 emissions)

SINGAPORE BRANCH

- 1 Harbour
- Front Place #13-01
- HarbourFront Tower One
- Singapore (098633)

YOKOHAMA LAB

- (Transportation Environment Lab)
- 5-32-84, Sugita, Isogo-ku, Yokohama,
- Kanagawa, Japan

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Autonomous Ship and system integration
- 4. What's more

IoT platform of NYK SIMS (Ship Information Management System) SIMS IoT data + SPAS manual data **Data Center SIMS Data Collection SIMS Monitoring & Analysis** Sat Com Onboard at Shore (VSAT, FBB) **Operation Center** (Tokyo, Singapore ...) • GPS • Doppler log Anemometer Analysis **SIMS** unit Gyro Compass **Performance Analysis** ------Onboard dashboard Long term analysis De William Barris In service performance Shore Dashboard VDR - For operation Data Acquisition and Motion sensor - For ship manager Processing <Navigation Bridge> Technical Analysis (NYK, MTI) <Engine Room & Cargo> Main Engine • Power plant Integrated Automation Cargo control System • Auxiliary machineries

Ship performance in service

6000TEU Container Ship

Wave height 5.5m, Wind speed 20m/s

BF scale 8, Head sea @ Trans-Pacific (Oakland, US – Tokyo, JP)

Effecting factors

1. Weather (wind, wave and current), 2. Ship design (hull, propeller, engine), 3. Ship condition (draft, trim, cleanness of hull and propeller, aging effect)

<Target vessel> 6000TEU Container Draft 12m even

Sea condition Beaufort scale

	wind speed	wave height	wave period			
	(m/s)	(m)	(sec)			
BF0	0.0	0.0	0.0			
BF3	4.5	0.6	3.0			
BF4	6.8	1.0	3.9			
BF5	9.4	2.0	5.5			
BF6	12.4	3.0	6.7			
BF7	15.6	4.0	7.7			
BF8	19.0	5.5	9.1			
BF9	22.7	7.0	10.2			

Odeg (wind, wave) – head sea

Estimation of seasonal sea margin

Ship performance model

Combine ship performance model with weather data to run simulations

Improve bad performance ship

23 % CO2 reduction was confirmed

Operational profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Etc.

'Digital Twin' will be more used not only for energy efficiency but also for improving safety

Anomaly detection from IoT data

- Find trouble phenomenon in engine & power plants -

Case) M/E (Main Engine) No.3 cylinder abnormal exhaust gas temperature

- 1. Visualization of data
- 2. Analysis by domain experts (marine engineer) . Accumulate cases.
- 3. Implement automatic anomaly detection function by using the accumulated data.

Hull Stress Monitoring System

- 1) This study was conducted as a part of the collaborative research project "Hull structure health monitoring of 14,000TEU large container ships" under the sup-port of the Ministry of Land, Infrastructure, Transportation and Tourism of Japan for i-Shipping operation.
- 2) This study was conducted as joint research by Japan Marine United Corporation, ClassNK, National Maritime Research Institute, Japan Weather As-sociation, NYK Line and MTI Co., Ltd.

Assessment of Fatigue Damage

Multi-Layered Doppler Sonar (MLDS)

- Familiar as Speed log
- Easy to install
- Low cost

Observed cavitation

Similar to model test cavitation pattern →It implies that the assumed inflow was a good estimate

Feedback to the subsequent vessel

Apply new propeller with 1.2% higher efficiency to the subsequent vessel in the series

Utilizing IoT data for safer operation

- Open collaboration with industry partners -

Infrastructure, Transport and Tourise

ShipDC

Internet of Ships (IoS) Open Platform

Roles are defined and each player provides their expertise on the Internet of Ship(IoS) platform. Data governance and business rules have been built by IoS OP Consortium under ShipDC.

Standardization activities of Ship IoT platform (SSAP3: <u>Smart Ship Application Platform 3 Project by JSMEA</u>)

2019 @ Copyright @ Ionohakobi Technology Institute

Before IoT:

Engineering knowledge, simulations and tools have been used for design and production

- Designers and engineers consider life cycle values of products only at design stage
 - Manufacturability, usability, maintainability, disposability ...

Era of IoT:

Engineering knowledge, simulations and tools are now demanded through life cycle of products

- **Operation optimization** with engineering knowledge
- Feedback of operation data to product design for **design optimization**

Pursuing total optimization of operation and product design

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Autonomous Ship and system integration
- 4. What's more

Approach to advanced automation of ships

ex) Automation level (AL1 – AL5) by Lloyds Register

- Power generation, management and distribution
- Navigation and communication
- Ventilation and chilled water
- Cargo and ballast management
- Fuel, lubrication and other ancillaries
- Fire fighting and emergency systems

• ...

Reference) Edward Fort , Global Head of Engineering, Lloyds Register, "Autonomous ships – LR approach" January 2018

The advanced automation will proceed as per each machinery system, depending on the importance level of each system and on the progress in automation-technology levels.

Typical category of MASS (Maritime Autonomous Surface Ship)

Assessment of MASS (Deep sea vessel)

	Conventional ship	Manned autonomous ship (advanced machine support)	Full autonomous ship	Full remote controlled ship
Incident risk	Base	+	+	+
Workload	Base	+	+	+
Cyber risk	+	—	_	
Total reliability	Base	+		_
Cost	Base	+	_	— —

Remarks

- 1. Using heavy fuel may not be suitable for ascertaining reliability of MASS.
- 2. Current essential elements such as international rules / industrial standards / insurances, have not covered some aspects of MASS.

Participate in Open Simulation Platform (OSP) JIP

OPEN SIMULATION PLATFORM

Joint Industry Project for the maritime industry

https://www.dnvgl.com/feature/open-simulation-platform-osp.html https://opensimulationplatform.com/

- DNV-GL, Rolls-Royce, SINTEF Ocean and NTNU leads the Joint-Industry-Project
- Open source simulation platform for design, construction and oeperation.

OSP Architecture

The Open Simulation Platform Architecture

Software Quality & Reliability

Highly automated system requires more & more reliability of software. To develop, design and approve efficiently, simulation-based test environment become more indispensable.

Source) DNV-GL Marine Cybernetics Advisory

https://www.dnvgl.com/services/hil-testing-concept-explanation--83385

Cyber Security

Cyber risk management will need to be implemented. Protection of Industry Control System is crucial

The Guidelines on Cyber Security onboard Ships - Version 3, BIMCO – Nov 2018

Cyber security guidelines in shipping

- **IMO, MSC (98)** Cyber risk management onboard ships should be included in SMS as of 1 Jan 2021 (Jun 2017)
- **BIMCO** the guidelines on cyber security onboard ships version 3 (Nov 2018)
- ABS, DNV-GL, LR, BV etc. Guidelines and notations of cyber security onboard ships (2016)
- **IEC 61162-460** Safety and security standards for navigation and radio communication equipment
- **IACS** Maritime Cyber System Recommendations (MCSR)

Cyber security guidelines

- NIST Framework and 800-53 computer security policies, procedures and guidelines
- ISO 27001/2 ISMS: Information Security Management System

Outline

- 1. Introduction
- 2. IoT and Big data in Shipping
- 3. Autonomous Ship and system integration
- 4. What's more

Future ship concept toward zero emission

NYK SUPER ECO SHIP 2050

67% reduction of necessary energy for propulsion (comparing to ships built in 2014)

Key R&D items for 2030

- Electrification
- Research for Fuel Cell
- Hull & propulsion
- Digitalization

NYK Maritime Museum & Hikawamaru (Sightseeing)

The NYK Maritime Museum

- 1993 The NYK Maritime Museum was founded in Yokohama.
- 2003 The Museum removed to the location of NYK Yokohama building.

NYK Hikawa Maru

- 1930 Hikawa Maru was put into service on the Japan-Seattle Line.
- 1960 She retired from services, and was moored at Yamashita park in YOKOHAMA.
- 2008 She was reopened to the public after renovating and redecorating.

Thank you very much for your attention