The International Smart & Autonomous Ship Conference @ Ulsan, Korea on 5th & 6th December 2019

R&D Activities of NYK toward Smart Shipping

5th December 2019

Hideyuki Ando, Senior General Manager, MTI (NYK Group)

- 2. Digitalization in Shipping
- 3. NYK's view on Autonomous Ship
- 4. Demonstration Project in Japan
- 5. Summary

- 2. Digitalization in Shipping
- 3. NYK's view on Autonomous Ship
- 4. Demonstration Project in Japan
- 5. Summary

NYK LINE

- Head Office: Tokyo, Japan
- Founded: September 29, 1885
- Business Scope
 - Liner (Container) Service
 - Tramp and Specialized Carrier Services
 - Tankers and Gas Carrier Services
 - Logistics Service
 - Terminal and Harbor Transport Services
 - Air Cargo Transport Service
 - Cruise Ship Service
 - Offshore Service
- Employees: 37,820 (as of the end of March 2017)
- Revenues: \$ 17.4 billion (Fiscal 2018)
- Fleet: 792 vessels(as of the end of March 2019)

MTI (R&D Arm of NYK LINE)

- Established : April 1, 2004
- Equity capital : JPY 99 million
- Stockholder : NYK Line (100%)
- Number of employees : 70 (as of 1st April, 2019)

NYK/MTI's path toward smarter ship and operation

Ship (Hardware)

Operation (Software)

Wind Power Generator Andromeda Leader

Electronic Controlled Engine

Alternative Marine Power

Energy Saving Device

Improved Governor Controller

創新書の変化を展れ

Hybrid

T/C

Shin Koho

Air Lubrication System

YAMATO, YAMATAI

Super Eco Ship2030

30% Energy Saving PCTC

Innovative Air Lubrication System SOYO

> Hybrid Electric Power Supply *Auriga Leader*

LNG-Fueled Tugboat

Sakigake

Now

OIL

LNG-Fueled PCTC Delivery in 2016

LNG Bunkering Vessel Delivery in 2016

Future

Super Eco Ship 2050

Measurement around propeller

- 2. Digitalization in Shipping
- 3. NYK's view on Autonomous Ship
- 4. Demonstration Project in Japan
- 5. Summary

Reference) McKinsey Company, How digital innovation can improve mining productivity, 2015 https://www.mckinsey.com/industries/metals-and-mining/our-insights/how-digital-innovation-can-%20improve-mining-productivity

IoT platform of NYK

How shipping can utilize Big data and IoT

- Identify right issues to solve -

Understand seasonal operation risks

Voyage simulation with past weather data

Combine ship performance model with weather data to optimize ship services

Improve bad performance ship

23 % CO2 reduction was confirmed

Operational profile

- Speed, RPM, Power
- Draft, trim, displacement
- Weather
- Sea margin
- Etc.

Energy saving modification

- Bulbous bow modification
- Install energy saving device (MT-FAST)
- Replace propeller
- Engine de-rating Modifications were conducted on 40 ships

Data and simulations played important roles to optimize ship design

What is the issue?

Anomaly detection from the collected data

- Find trouble phenomenon from the IoT data -

Case) M/E (Main Engine) No.3 cylinder abnormal exhaust gas temperature

- 1. Visualization of data
- 2. Analysis by domain experts (marine engineer) . Accumulate cases.
- 3. Implement automatic anomaly detection functions by using accumulated cases.

NYK/MTI R&D projects for safer operation - open collaboration with industry partners -

Structural Health Monitoring

Damage prevention of engine-power plant

i-Shipping(Operation): Japanese government funding R&D projects – IoT for safety (2016-2020) Joint research with ClassNK

Simulation of LNG cargo transport

Collision avoidance

and autonomous ship

2. Digitalization in Shipping

3. <u>NYK's view on Autonomous Ship</u>

4. Demonstration Project in Japan

5. Summary

Our objective

- Improve Safety (reduce the number of accident)
- Reduce workload (new approaches for future crew shortage)

What do we need ?

- Advanced support by computer systems (fully utilizing computer power) = Complement human operations
- At the same time, **PPTO** (<u>P</u>eople, <u>P</u>rocess, <u>T</u>echnology and <u>O</u>rganization) is important

How to approach ?

- User-centric ... Involvement of experienced captains with know-how, skills & experiences to lead projects to the right direction
- Continuous improvement ... identify the right issues to solve and improve step-by-step (bottom-up approach)
- Open collaboration with best partners

Manned-Autonomous Ship

Provided by Japan Radio Co. Ltd.

- Advanced support system ... additional functions to assist cognitive process of human operator based on existing navigation system
- Autonomous operation under approval of human operator

Reference : 1) Lloyds Register, "Current and Emerging Cyber Risks facing Maritime Industries", European Maritime Cyber Risk Management Conference, London, June 2017

Cyber access

autonomous/

AL₃

for

remote monitoring and control

 onboard permission

requiredonboard

override possible

- 2. Digitalization in Shipping
- 3. NYK's view on Autonomous Ship
- 4. <u>Demonstration Project in Japan</u>

5. Summary

Concept of Action Planning System (APS)

NYK group aims to define a manned-autonomous system framework as Action Planning System (APS) and to clarify requirements for APS through open collaboration.

The APS targets the decision-making support necessary for seafarers to maneuver vessels and has the following three specific functions.

- 1. Anti-collision and anti-aground support: formulate and present an action plan to prevent collision and aground during voyage. The parameters for the analysis can be different depending on the area (open ocean, coastal area, congested area, or waterway).
- 2. Approach support: formulate and present an action plan for stopping and restarting the boat, e.g., anchoring, berthing, and mooring.
- **3.** Docking and undocking support: formulate and present an action plan for docking/undocking including position and attitude adjustment by using various actuators such as main engine, rudder, thruster, and tug's support. This function is the same as the approach support mode for a ship with a docking and undocking capability of its own.

The ODD for APS is roughly defined as follows. Since onboard seafarers validate the action plan from the system, those who handle APS should be required to have appropriate competences.

- 1. The geographic and weather condition are acceptable enough that ships can be controlled by the system, which refers to the standards for other navigation instruments, such as the Dynamic Positioning System, etc.
- 2. The system behaves correctly, i.e., information is correctly displayed on the monitor, and the results are validated by human judgment.
- 3. Integral and reliable information including human manual function can be obtained for situation assessment and action planning.

	Status	Target	Definition		
ODD	AP Normal 0	Fully autonomous navigation	It has highly reliable information and planning algorithms to carry out all tasks. Human approval can be skipped in usual situations. It does not apply to the current APS, but it is assumed to be available for achieving automation only with machines in the future.		
	AP Normal 1	Manned autonomous navigation	It has reliable information to carry out tasks till action planning. Human intervention and additional actions other than verification and approval of navigation plans are unnecessary.		
	AP Normal 2	Manned autonomous navigation	To maintain all tasks to be executed with high accuracy, part of the input information is missing, or some tasks depend on the manual inputs by human only.		
Fallbac	k AP Failed	NA	A state in which some or all the information sources of tasks are missing, and it is impossible to present an appropriate analysis and action plan even if a human adds and/or modifies information.		

Table 3. Definition of APS status.

© 2016. NYK Group. All rights reserved.

Criteria for determining APS status

Risk assessment to check relative safeness (HAZID, FMEA) GROUP

- As part of the demonstration project in Japan under MLIT program -

			Extremely remote	Very remote	Remote	Seldom	Resonably probable	Probable	Frequent
			5000隻で20年に 1回の頻度	Once per 10 years per 1000 vessels	Once per year per 1000 vessels	Once per year per 100 vessels	Once per year per 10 vessels	Once per year per vessel	Once per month per vessel
		Criticality / Freq scale	1	2	3	4	5	6	7
	Minor	1			•			T	•
	Moderately serious	2							
	Serious	3				,	1		
Conventional Ship	Major	4		F2-common	F3-mitigation A4.1, A4.2, B1.2, E1.1, E2.1, E2.2, E3.1, E3.2	F4-mitigation C1.2, C1.3, C1.4, C2.1, C3.1, C3.2, D1.2, D1.3, D3.1, D4.1			
			F1-common A1.1, B2.3	A3.1, A4.3, A3.3, B2.2, B3.2 D1.1, D2.1, F1.2, F1.4, F1.5	F3-common A3.2, C1.5, E4.2, F1.3				
	Exceptional	5	•				18		
	Minor	1		F2-new risk. A2.1	F3-new risk F1.6		•	,	
	Moderately serious	2		•					
	Serious	3							н
4			F1-mitigation C3.2	F2-mitigation A4.1, A4.2, B1.2, E1.1, E2.1, E2.2, E3.1, E3.2	F3-mitigation C1.2, C1.3, C1.4, C2.1, D1.2, D1.3, D3.1, D4.1				
hip with APS	Major	4	F1-common A1.1, B2.2	F2-common A3.1, A4.3, A3.3, B2.1, B3.2 D1.1, D2.1, F1.2, F1.4, F1.5	F3-common A3.2, C1.5, E4.2, F1.3				u.
			F1-new risk A1.2, A2.2, B1.1 B2.3, B3.1	F2-new risk E4.1, F1.1		Blue: risk mitigated			
	Exceptional	5	•			Red: new risk			

Demonstration Project in Japan under MLIT program

- Objective: Demonstrate APS concept
- Target ship: Tug boat of Shin-Nippon Kaiyosha
- Period: 2018 2020
- Project members: company name (role)
 - 1. MTI (project coordinator/concept design)
 - 2. JMS (project coordinator/simulator)
 - 3. NYK (project coordinator/ship owner)
 - 4. IKOUS (ship owner)
 - 5. Furuno Electric (navigation equipment)
 - 6. Japan Radio (navigation equipment)
 - 7. Tokyo Keiki (navigation equipment)
 - 8. BEMAC (DPS)
 - 9. Keihin Dock (shipyard)
 - 10. Mitsubishi Shipbuilding (engineering)
 - 11.Sky Perfect JSAT (satellite communication)
 - 12.NTT DoCoMo (4G/5G network)
 - 13.NTT (system provider)
 - 14. Niigata Power Systems (propulsion)
 - 15.ClassNK (verifier)
 - 16.NMRI (risk assessment)

The 1st demonstration in 2019 Winter The 2nd demonstration in 2020 Winter

- 2. Digitalization in Shipping
- 3. NYK's view on Autonomous Ship
- 4. Demonstration Project in Japan
- 5. <u>Summary</u>

Summary

Manned-Autonomous Navigation as a waypoint

Manned autonomous navigation can be positioned as a "technological waypoint" towards fully autonomous and remotely controlled navigation.

Legal Disclaimer

No part of this document shall be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of NYK Line.