



#### 3Dシミュレーションを用いた センサーフュージョンと自動着桟の検証

2022/11/24

株式会社MTI 船舶物流技術グループ 谷原圭祐





#### 3Dシミュレーションへの期待

- ・自動車業界では3Dシミュレーションの活用が進んでいる
  - モデルベース開発
  - ・膨大な周辺環境のデータ生成
  - ・ 環境との相互作用を踏まえたモデル開発
- ・船舶における活用への期待
  - ・自動車以上に実試験が高コスト
  - シミュレーションの検証効果が大きい
  - ・検証サイクルの高速化
- センサーシミュレーション
  - 3D環境を用いることでより現実に近い検証





https://www.rikei.co.jp/vr\_solution/case/subaru/

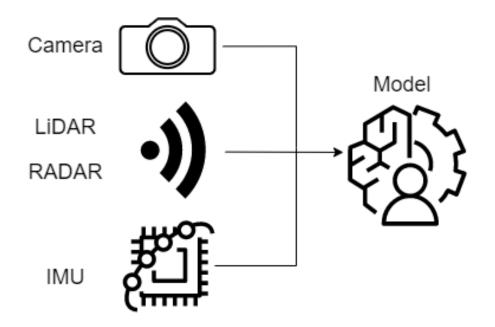




## 船舶におけるセンサー群

- ・現在&将来: 多様なセンサーの利用
  - ex: レーダー、GPS、カメラ、LiDAR…
- ・センサーには得意分野・苦手分野がある

|       | 得意              | 苦手               |
|-------|-----------------|------------------|
| カメラ   | 物体の識別への活用       | 3次元の位置関係、周辺環境の影響 |
| LiDAR | 3次元的な距離・形状      | 物体の識別・高コスト       |
| レーダー  | 3次元的な距離・低コスト    | 物体の形状の取得         |
| GPS   | 周辺環境によらない自己位置獲得 | 誤差が数m            |


- 多様なセンサーを組み合わせて得意・苦手分野を補う
  - ・センサーフュージョン
  - ・ex: カメラとLiDARを組合せて3次元・色情報による高精度な物体識別





#### センサーフュージョンへの期待

- ・センサーフュージョンで高精度な認識モデルを構築
- 自動離着桟・避航操船などで活用が見込まれる
  - 避航対象の物体認識
  - 岸壁・着桟目標の物体認識
  - 周辺物体との距離計測

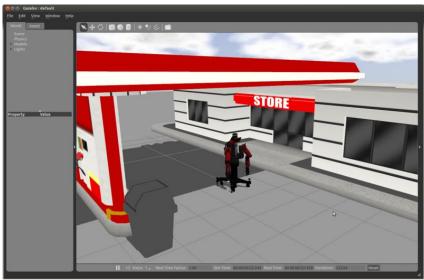






## 利用するシミュレーション環境

• ROS、Gazebo、Matlabを連携



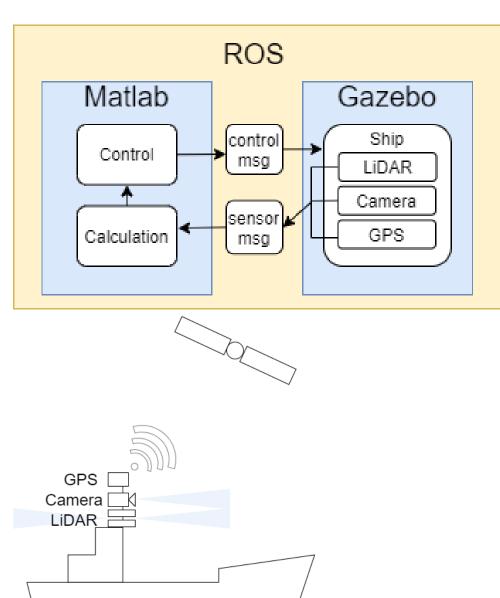





http://gazebosim.org/ https://jp.mathworks.com

- ROS
  - ロボット研究開発用に開発された動作用OSのようなもの
  - センサー・制御・認識などソフトウェア間の通信が行える
- Gazebo
  - ROSと連携可能な物理エンジン
  - ロボット・物体の干渉・認識等をシミュレーション
- Matlab
  - 商用の数値計算プラットフォーム
- 環境構築
  - 船舶モデル・センサーを追加
  - ・認識・制御アルゴリズムを実装

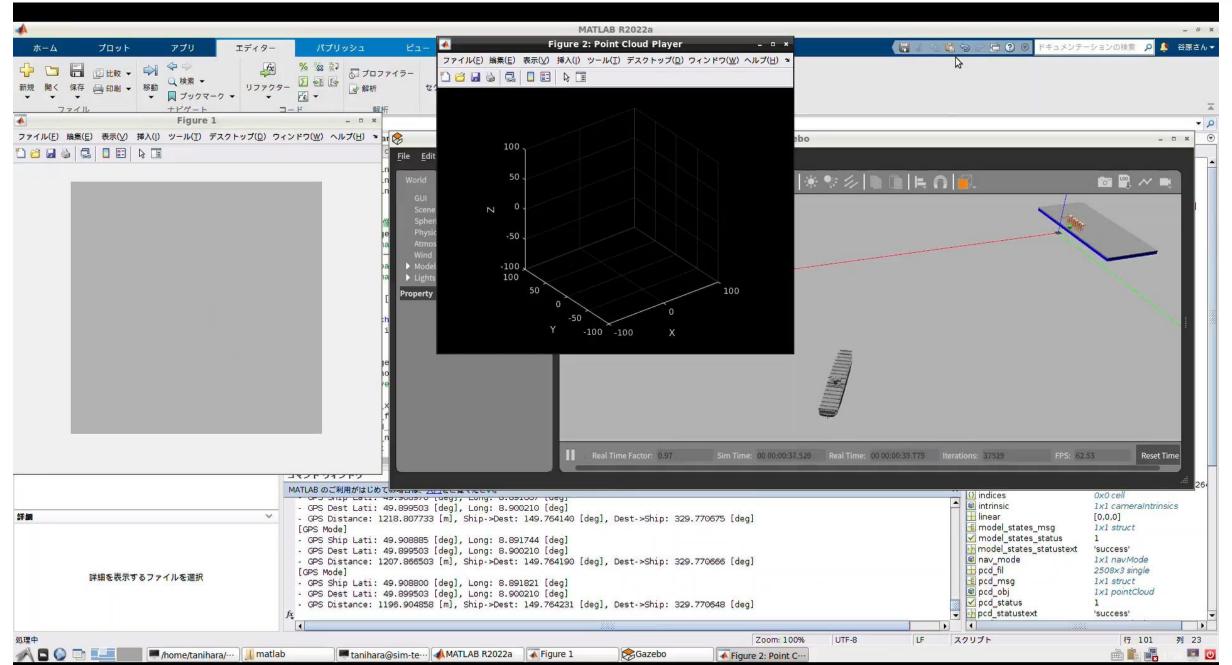



http://gazebosim.org/tutorials?tut=ros\_roslaunch&cat=connect\_ros





# 構築したシミュレーション環境


- ソフトウェア構成
  - ・ROS: 動作プラットフォーム、通信仲介
  - Gazebo: モデル動作
  - Maltab: データ受取、制御指令
- モデル構成
  - 船体運動
    - 速度・経路をセンサー情報に応じて切替
  - 船舶上のセンサーモデル
    - GPS、カメラ、LiDAR
  - ・岸壁上のモデル
    - ・ 着桟目標物(チェッカーボード)



Ship

#### Monohakobi Techno Forum 2022









# まとめと今後

- ・本研究において、3Dシミュレーション環境を構築
  - GPS・LiDAR・カメラを船舶上へ追加
  - ・岸壁上のチェッカーボードを着桟目標として追加
  - ・センサーフュージョンによる簡易的な着桟を実装
- 3Dシミュレーション環境を用いた検証の可能性を確認
- 今後
  - 船体運動モデルを接続し、動作を現実に即したものへ
  - 周辺環境を高精細にし、センサー検証をより現実的に
    - Unity, Unreal Engineなどの活用





#### ご清聴ありがとうございました